Mọi người ơi giải nhanh giúp mình bài này
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ làm theo đề bài của mình nếu đúng thì ... nha
Biến đổi vế phải ta có :
( x + y) [ ( x - y)^2 + xy ] = ( x + y)( x^2 - 2xy + y^2 + xy)
= ( x+ y)( x^2 - xy+ y^2)
= x^3 + y^3
VẬy VT = VP đẳng thức được CM
\(=\left[{}\begin{matrix}\dfrac{5}{8}-x+\dfrac{1}{4}-\dfrac{3}{2}\\x-\dfrac{5}{8}+\dfrac{1}{4}-\dfrac{3}{2}\end{matrix}\right.=\left[{}\begin{matrix}-x-\dfrac{5}{8}\\x-\dfrac{15}{8}\end{matrix}\right.\)
\(2.\left|\dfrac{5}{8}-x\right|=\dfrac{5}{4}\\\left|\dfrac{5}{8}-x\right|=\dfrac{5}{8} \\ \left[{}\begin{matrix}\dfrac{5}{8}-x=\dfrac{5}{8}\\\dfrac{5}{8}-x=-\dfrac{5}{8}\end{matrix}\right.\left[{}\begin{matrix}x=0\\x=\dfrac{5}{4}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x-1,7=2,3\\x-1,7=-2,3\end{matrix}\right.\left[{}\begin{matrix}x=4\\x\neg-\dfrac{3}{5}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\left[{}\begin{matrix}x=-\dfrac{5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
ĐK: `x \ne kπ`
`cot(x-π/4)+cot(π/2-x)=0`
`<=>cot(x-π/4)=-cot(π/2-x)`
`<=>cot(x-π/4)=cot(x-π/2)`
`<=> x-π/4=x-π/2+kπ`
`<=>0x=-π/4+kπ` (VN)
Vậy PTVN.
a)Đk:\(x\ne4\)
\(\dfrac{x^4}{4-x}+x^3+1=\dfrac{x^4+\left(x^3+1\right)\left(4-x\right)}{4-x}\)\(=\dfrac{x^4+\left(-x^4+4x^3+4-x\right)}{4-x}=\dfrac{4x^3-x+4}{4-x}\)
b) Đk: \(x\ne0;x\ne1\)
\(\dfrac{1}{x^2-x}+\dfrac{2x}{x-1}=\dfrac{1}{x\left(x-1\right)}+\dfrac{2x^2}{x\left(x-1\right)}=\dfrac{1+2x^2}{x\left(x-1\right)}\)
Cho một gương phẳng thẳng đứng như hình bên, chiếu a tới SI từ trên xuống hợp góc 35 độ. Cho ép dưới của gương là điểm M
a)Vẽ tia phản xạ của tia trên và chú thích đầy đủ
b)Tính số đo góc phản xạ và số đo góc SIM tạo bởi tia tới với gương phẳng
Em đăng lại thành câu hỏi mới nhé!