Cho 2 số thực dương a,b thỏa mãn a^2 + 4b^2 = 9. Tìm GTLN của:
\(T=\frac{ab}{a+2b+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+\dfrac{1}{9}+\dfrac{1}{9}\ge3\sqrt[3]{\dfrac{a^3}{81}}=\dfrac{a}{\sqrt[3]{3}}\)
\(b^3+\dfrac{8}{9}+\dfrac{8}{9}\ge3\sqrt[3]{\dfrac{64b^3}{81}}=\dfrac{4b}{\sqrt[3]{3}}\)
Cộng vế:
\(\dfrac{1}{\sqrt[3]{3}}\left(a+4b\right)\le a^3+b^3+2\le3\)
\(\Rightarrow a+4b\le3\sqrt[3]{3}\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{\sqrt[3]{9}};\dfrac{2}{\sqrt[3]{9}}\right)\)
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
Theo đề : a2 + 4b2 = 9 => (a + 2b)2 = 4ab + 9 <=> 4ab = (a + 2b)2 - 9
Ta có : T = \(\frac{ab}{a+2b+3}\)=> 4T = \(\frac{4ab}{a+2b+3}\)= \(\frac{\left(a+2b\right)^2-9}{a+2b+3}\)=\(\frac{\left(a+2b+3\right)\left(a+2b-3\right)}{a+2b+3}\)= a + 2b -3
Mặt khác a + 2b \(\le\) \(\sqrt{2\left(a^2+4b^2\right)}\) = \(\sqrt{2.9}\)= \(3\sqrt{2}\)=> \(T\le\frac{3\sqrt{2}-3}{4}\)
Dấu "=" xảy ra khi a = 2b = \(\frac{3\sqrt{2}}{2}\)=> b = \(\frac{3\sqrt{2}}{4}\)
Vậy giá trị nhỏ của T là \(\frac{3\sqrt{2}-3}{4}\)tại a = \(\frac{3\sqrt{2}}{2}\)và b = \(\frac{3\sqrt{2}}{4}\)
Có gì sai mọi người cmt cho mk bt nha :>