Giải nhanh giúp mình với
Tìm các số tự nhiên x khác 0 thỏa mãn:
x/15 < 4/15
5/9 >x/9
1 < x/9 < 11/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{15}< \frac{4}{15}\)=> x=1,2,3 (1)
\(\frac{5}{9}>\frac{x}{9}\)=> x=1,2,3,4 (2)
\(1< \frac{x}{8}< \frac{11}{8}\)=> x=9,10 (3)
Từ (1),(2),(3) => đề bài sai
1. \(\dfrac{x}{15}< \dfrac{4}{15}\)
<=> \(x< 4\) (x \(\ne0\))
2. \(\dfrac{5}{9}>\dfrac{x}{9}\)
<=> \(5>x\) (x \(\ne0\))
3. \(1< \dfrac{x}{8}< \dfrac{11}{8}\)
<=> \(\dfrac{8}{8}< \dfrac{x}{8}< \dfrac{11}{8}\)
<=> 8 < x < 11
<=> x \(\in\left\{9;10\right\}\)
Bài 1 :
Đặt S = 1 + ( -2 ) + 3 + ( -4 ) + 5 + ( -6 ) + 7 + ( -8 ) + 9 + ( -10 )
S = [ 1 + ( -2 ) ] + [ 3 + ( -4 ) ] + [ 5 + ( -6 ) ] + [ 7 + ( -8 ) ] + [ 9 + ( -10 ) ]
S = ( -1 ) + ( -1 ) + ( -1 ) + ( -1 ) + ( -1 )
S = -5
Bài 2 :
2n + 12 chia hết cho n - 1
<=> 2( n - 1 ) + 14 chia hết cho n - 1
Vì 2( n - 1 ) + 14 chia hết cho n - 1 mà 2( n - 1 ) chia hết cho n- 1 => 14 chia hết cho n - 1
=> n - 1 thuộc Ư( 14 )
=> n - 1 thuộc { +- 1 ; +-2 ; +-7 ; +-14 }
Thử từng trường hợp trên , ta có n thuộc { 0 ; -2 ; -1 ; 3 ; -6 ; 8 ; -13 ; 15 }
Bài 3 :
Tập hợp các số nguyên thỏa mãn là : x = { -2016 ; 2016 }
úi cậu làm đúng rồi giỏi quá cho một trào vỗ tay tèn tén ten là lá la thui tớ đi ăn cơm đây bye bye có duyên gặp lại bye bye huhu
do x+y+z=1 nên 1/x+1/y+1/z sẽ bằng \(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}=1+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}+1\)
\(=3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)
Ta có
\(\frac{x}{y}+\frac{y}{z}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
Cộng vế theo vế của 3 bất đẳng thức trên ta được
\(\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge6\)
Cộng 3 vào 2 vế bất đẳng thức
\(\Rightarrow3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\ge9\)
Mà \(3+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge9\)
Xong !!!!
T I C K nha cảm ơn nhìu
CHÚC BẠN HỌC TỐT
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}=9\left(đpcm\right)\)
Dấu "=" xảy ra <=> x=y=z=1/3
a: =11/4+5/4-9/8
=4-9/8=32/8-9/8=23/8
b: \(=\dfrac{6}{7}\cdot\dfrac{7}{4}+\dfrac{5}{3}=\dfrac{3}{2}+\dfrac{5}{3}=\dfrac{9+10}{6}=\dfrac{19}{6}\)
c: \(=\dfrac{13}{18}\cdot\dfrac{9}{5}-1=\dfrac{13}{10}-1=\dfrac{3}{10}\)
d: \(=3+\dfrac{9}{4}\cdot\dfrac{5}{3}=3+\dfrac{45}{12}=\dfrac{81}{12}=\dfrac{27}{4}\)
Vì x và y nguyên không âm nên x ≥ 9
+) Với x = 9 thì ta tìm được y = 0
+) Xét x > 9. Khi đó x chia cho 5 có 5 loại số dư là 0, 1, 2, 3, 4
TH1: x chia hết cho 5 hay x có dạng 5k với k là số tự nhiên.
Ta có x2 + x - 89 = 25k2 + 5k - 89
Dễ thấy 25k2 + 5k chia hết cho 5 còn 89 không chia hết cho 5 nên vế trái không chia hết cho 5 => ko có cặp (x, y) thỏa mãn
Các TH sau em làm tương tự.
Những bài dạng này thường có cách làm chung là thử những trường hợp đầu tiên đúng, sau đó xét số trường hợp còn lại và nó sai sạch bằng 1 tính chất nào đấy, cụ thể trong bài này là tính chia hết cho 5
a) Đặt: \(x+13=a^2,x-2=b^2\)
\(\Rightarrow a^2-b^2=15\Leftrightarrow\left(a-b\right)\left(a+b\right)=15\Rightarrow\orbr{\begin{cases}a-b=1,a+b=15\\a-b=3,a+b=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=8,b=7\Rightarrow x=51\\a=4,b=1\Rightarrow x=3\end{cases}}\)
b) Đặt \(x^2+6x+16=n^2\Leftrightarrow n^2-\left(x+3\right)^2=7\Leftrightarrow\left(n-x-3\right)\left(n+x+3\right)=7\)
\(\Leftrightarrow\hept{\begin{cases}n-x-3=1\\n+x+3=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\n=4\end{cases}\Rightarrow x=0}\)
c) \(x^2+3x+9\)là số chính phương \(\Leftrightarrow4\left(x^2+3x+9\right)\)là số chính phương
Đặt \(4\left(x^2+3x+9\right)=m^2\Leftrightarrow m^2-\left(2x+3\right)=27\Leftrightarrow\left(m-2x-3\right)\left(m+2x+3\right)=27\)
\(\Rightarrow\orbr{\begin{cases}m-2x-3=1,m+2x+3=27\\m-2x-3=3,m+2x+3=9\end{cases}\Leftrightarrow\orbr{\begin{cases}m=14,x=5\\m=6,x=0\end{cases}}}\)
d) Đặt \(x+26=k^3,x-11=l^3\)
\(\Rightarrow k^3-l^3=37\Leftrightarrow\left(k-l\right)\left(k^2+l^2+kl\right)=37\Rightarrow\orbr{\begin{cases}k-l=1\\k^2+l^2+kl=37\end{cases}}\)
\(\Rightarrow k=4,l=3\Rightarrow x=38\)