Cho pt mũ : m.3^(x^2 -3x+2) + 3^(4-x^2)= 3^(6-3x) + m .tìm m để pt có đúng 3 nghiệm thực
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Thay m=-2 vào pt, ta được:
\(x^2-2x+1=0\)
hay x=1
f: Thay x=-3 vào pt, ta được:
\(9-3m+m+3=0\)
=>-2m+12=0
hay m=6
x^2-3x-(m-1)=0(1)
a)Dể phương trình có 2 nghiệm dương phân biệt:delta>0,S>0,P>0
9+4m-4>0>>>m>-5/4;S=3>0;P=m-1>0>>m>1.
>>>>Để(1) có 2 nghiệm phân biệt thì m>1.
b)x1^3+x2^3=18>>>(x1+x2)(x1^2-x1x2+x2^2)=18>>>x1^2-x1x2+x2^2=6
>>>(x1+x2)^2-3x1x2=6>>>3x1x2=3>>>x1x2=1
-(m-1)=1>>>m=0.
Vậy m=0
a) Thay m=1 vào phương trình, ta được:
\(x^4-4x^2-5=0\)
\(\Leftrightarrow x^4+x^2-5x^2-5=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-5\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-5\right)=0\)
mà \(x^2+1>0\forall x\)
nên \(x^2-5=0\)
\(\Leftrightarrow x^2=5\)
hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)
Vậy: Khi m=1 thì tập nghiệm của phương trình là: \(S=\left\{\sqrt{5};-\sqrt{5}\right\}\)
\(m.3^{x^2-3x+2}+3^{4-x^2}=3^{6-3x}+m\)
\(\Leftrightarrow m.3^{x^2-3x+2}+3^{6-3x-\left(x^2-3x+2\right)}=3^{6-3x}+m\)
Đặt \(\left\{{}\begin{matrix}x^2-3x+2=a\\6-3x=b\end{matrix}\right.\)
\(m.3^a+3^{b-a}=3^b+m\Leftrightarrow m\left(3^a-1\right)=3^b-3^{b-a}\)
\(\Leftrightarrow m.\left(3^a-1\right)=3^{b-a}\left(3^a-1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3^a-1=0\\m=3^{b-a}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3^{x^2-3x+2}=1\\3^{4-x^2}=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\3^{4-x^2}=m\end{matrix}\right.\)
Để pt có đúng 3 nghiệm thực thì \(3^{4-x^2}=m\) có nghiệm duy nhất hoặc có 1 nghiệm bằng 1 hoặc 2.
- Nếu \(x=1\Rightarrow m=3^3=27\)
- Nếu \(x=2\Rightarrow m=3^0=1\)
Xét hàm \(f\left(x\right)=3^{4-x^2}\Rightarrow f'\left(x\right)=-2x.3^{4-x^2}.ln3\)
\(\Rightarrow f\left(x\right)\) đồng biến khi \(x< 0\), nghịch biến khi \(x>0\)
\(\Rightarrow\) Phương trình có nghiệm duy nhất khi \(x=0\Rightarrow m=3^4=81\)
\(\Rightarrow m=\left\{1;27;81\right\}\)