Cho hinh tam diac ABC ,M la trung diem cua BC .noi A voi M.Hãy chứng tỏ rằng diện tích hai hình tam giác ABM và ACM bằng nhà
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì BM = MC mà 2 hình đều có chung chiều cao AM
=> Diện tích 2 hình bằng nhau
Kẻ AH vuông góc với BC
Ta có: \(S_{ABM}=\frac{BM\times AH}{2}\) ; \(S_{ACM}=\frac{CM\times AH}{2}\)
Vì CM=BM nên \(\frac{CM\times AH}{2}=\frac{BM\times AH}{2}\)
=> Diện tích 2 tam giác ABM và ACM = nhau
Ta kẻ AHAH vuông góc với BCBC
Ta có : SΔABM=BM×AH2SΔABM=BM×AH2
SΔACM=CM×AH2SΔACM=CM×AH2
Do CM=BMCM=BM
⇒ΔABM=ΔACM⇒ΔABM=ΔACM → đpcm .
Kẻ AH vuông góc với BC
Ta có: SABM=BM×AH2 ; SACM=CM×AH2
Vì CM=BM nên CM×AH2 =BM×AH2
=> Diện tích 2 tam giác ABM và ACM = nhau
+) Xét tam giác \(ABN\) và tam giác \(ABC\)
2 tam giác chung cạnh \(AB\); chung chiều cao hạ từ \(A\) vuông góc với cạnh \(BC\); cạnh \(BN=\frac{2}{3}\) cạnh \(BC\)
\(\Rightarrow\) diện tích tam giác \(ABN=\frac{2}{3}\) diện tích tam giác \(ABC\)
\(\Rightarrow\) diện tích tam giác \(ABN\) bằng \(340,2\times\frac{2}{3}=226,8\left(cm^2\right)\)
+) Xét tam giác \(AMN\) và tam giác \(ABN\)
2 tam giác chung cạnh \(AN\) ; chung chiều cao hạ từ \(A\) vuông góc với cạnh \(BC\) ; cạnh \(MN=\frac{1}{2}\) cạnh \(BN\)
\(\Rightarrow\) diện tích tam giác \(AMN=\frac{1}{2}\) diện tích tam giác \(ABN\)
\(\Rightarrow\) diện tích tam giác \(AMN\) bằng \(226,8\times\frac{1}{2}=113,4\left(cm^2\right)\)
đáp số : \(113,4cm^2\)
a: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của ME
Do đó: AEBM là hình bình hành
mà MA=MB
nên AEBM là hình thoi
b: Xét tứ giác ACME có
AE//MC
AE=MC
Do đó: ACME là hình bình hành
Suy ra: Hai đường chéo AM và CE cắt nhau tại trung điểm của mỗi đườg
=>F là trug điểm của AM
hay FA=FM
vì có chiều cao bằng nhau và có chung cạnh đáy nên bằng nhau chứ gì nữa mà hỏi