Tính A:
A=3.4 + 4.5 + 5.6 + .......... + 59.60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1.2+2.3+3.4+4.5+...+59.60\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+59.60.\left(61-58\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+...+59.60.61-58.59.60\)
\(\Rightarrow3A=59.60.61\)
\(\Rightarrow A=\frac{59.60.61}{3}\)
\(A=\dfrac{3}{4\cdot5}+\dfrac{3}{5\cdot6}+...+\dfrac{3}{59\cdot60}\\ =3\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{59\cdot60}\right)\\ =3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{59}-\dfrac{1}{60}\right)\\ =3\left(\dfrac{1}{4}-\dfrac{1}{60}\right)=3\left(\dfrac{15}{60}-\dfrac{1}{60}\right)\\ =3\cdot\dfrac{7}{30}=\dfrac{7}{10}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{59\cdot60}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{69}-\frac{1}{60}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)
\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(P=\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.33....59.60\)
\(\text{Ta có:}\)
\(91=13.7\)
\(\rightarrow4.13+5.17=42.35⋮91\)
\(\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.33....59.60\)
\(\rightarrow\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32.....60.42.35\)
\(\rightarrow\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{59.60}\right).31.32....60.20.91⋮91\)
A = 1.2 + 2.3 + 3.4 + ....... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +.... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100
3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99 . 100 . 101
3A = 99 . 100 . 101 = 999900
A = 999900 : 3 = 333300
A=1*2+2*3+3*4+...+99*100
A=100*101*102:3
A=343400(công thức)
gọi tổng là S ta có
3S=1.2.3-0.1.2+2.3.4-1.2.3+......+99.100.101-98.99.100
=>3S=98.99.100
=>S=\(\frac{98.99.100}{3}=323400\)
\(3A=3.4.3+4.5.3+5.6.3+...+59.60.3\)
\(3A=3.4\left(5-2\right)+4.5\left(6-3\right)+5.6.\left(7-4\right)+...+59.60\left(61-58\right)\)
\(3A=3.4.5-2.3.4+4.5.6-3.4.5+...+59.60.61-58.59.60\)
\(3A=59.60.61-2.3.4\)
\(\Rightarrow A=59.20.61-2.4=...\)