K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 6 2019

a/ \(y'=x^2-mx-2\)

Để hàm số đồng biến trên R \(\Leftrightarrow y'\ge0\) \(\forall x\in R\)

\(\Leftrightarrow\Delta=m^2+8< 0\) (vô lý)

Vây không tồn tại m thỏa mãn

b/ \(y=\frac{x^2-2mx-1}{x-1}\Rightarrow y'=\frac{\left(2x-2m\right)\left(x-1\right)-\left(x^2-2mx-1\right)}{\left(x-1\right)^2}\)

\(y'=\frac{x^2-2x+2m+1}{\left(x-1\right)^2}=\frac{\left(x-1\right)^2+2m}{\left(x-1\right)^2}\)

Để hàm số đồng biến trên TXĐ

\(\Leftrightarrow y'\ge0\) \(\forall x\in D\Leftrightarrow\frac{\left(x-1\right)^2+m}{\left(x-1\right)^2}\ge0\) \(\forall x\Rightarrow m\ge0\)

18 tháng 11 2023

a: Để hàm số y=kx-3 đồng biến trên R thì k>0

b: Để hàm số y=2kx+1 đồng biến trên R thì 2k>0

=>k>0

c: Để hàm số \(y=\left(4k+2\right)x+1\) đồng biến trên R thì 4k+2>0

=>4k>-2

=>\(k>-\dfrac{1}{2}\)

18 tháng 11 2023

Để hàm số đồng biến trên R thì:

a) k > 0

b) 2k > 0

⇔ k > 0

c) 4k + 2 > 0

⇔ 4k > -2

⇔ k > -1/2

27 tháng 10 2021

a: để hàm số đồng biến trên R thì m-1>0

hay m>1

b: Để hàm số nghịch biến thì m>0

27 tháng 10 2021

Còn câu C D làm sao ạ

 

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

28 tháng 11 2021

\(a,\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}>0\)

Mà \(\sqrt{\dfrac{m-2}{m+3}}\ge0\Leftrightarrow\sqrt{\dfrac{m-2}{m+3}}\ne0\Leftrightarrow m\ne2;m\ne-3\)

\(b,y=m^2x-5mx-6m=x\left(m^2-5m\right)-6m\)

Đồng biến \(\Leftrightarrow m^2-5m>0\Leftrightarrow m\left(m-5\right)>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>5\end{matrix}\right.\)

\(c,y=x\left(\dfrac{m+5}{m-2}-1\right)+\sqrt{m-2}=\dfrac{7}{m-2}x+\sqrt{m-2}\)

Đồng biến \(\Leftrightarrow\dfrac{7}{m-2}>0\Leftrightarrow m-2>0\Leftrightarrow m>2\)

DD
11 tháng 8 2021

\(y=-\frac{x^3}{3}+2x^2-mx+1\)

\(y'=-x^2+4x-m\)

Để hàm số luôn nghịch biến trên \(ℝ\)thì \(y'\le0\)với mọi \(x\inℝ\).

Suy ra \(-x^2+4x-m\le0\)với mọi \(x\inℝ\).

\(\Leftrightarrow\hept{\begin{cases}-1< 0\\\Delta'\le0\end{cases}}\Leftrightarrow4+m\le0\Leftrightarrow m\le-4\).

a: Để hàm số đồng biến trên R thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số, ta được:

m+3=5

hay m=2

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số,ta được:

\(m+3=5\)

hay m=2