K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

tam giác ACD có AO=OD(O là giao điểm hai đường chéo)

                             AM=MD(M là trung điểm AD)                             suy ra MO là đường trung bình tam giác ACD

                            => MO=\(\dfrac{DC}{2}\)=\(\dfrac{16}{2}\)=8 cm

tam giác ACD vuông tại D suy ra AC2= AD2+DC2

                                                                 AC2= 122+162= 144+256=400

                                                      => AC=\(\sqrt{400}\)=20 cm

tam giác ACD vuông tại D có DO là đường trung tuyến(OB=OD)

                                    suy ra DO= \(\dfrac{AC}{2}\)=\(\dfrac{20}{2}\)=10 cm

tui làm bài 1 thui  còn bài còn lại làm biếng

30 tháng 10 2021

Nhanh giùm mình với ạ

31 tháng 10 2021

a: Xét tứ giác BCDE có 

\(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BCDE là tứ giác nội tiếp

hay B,C,D,E cùng thuộc một đường tròn

a: Xét ΔABC có

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có

M là trung điểm của GB

N là trung điểm của GC

Do đó: MN là đường trung bình của ΔGBC

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra DE//MN và DE=MN

b:Xét ΔEBC và ΔDCB có

EB=DC

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)

hay \(\widehat{GBC}=\widehat{GCB}\)

Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)

nên ΔGBC cân tại G

Suy ra: GB=GC

Suy ra: G nằm trên đường trung trực của BC(3)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra AG là đường trung trực của BC

hay AG\(\perp\)BC

AH
Akai Haruma
Giáo viên
27 tháng 12 2021

Đường thẳng qua A, song song với BC thì cắt AC tại A luôn rồi chứ cắt tại E làm sao được bạn?