K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 x 2 = 4

2 x 4 = 8

2 x 6 = 12

2 x 8 = 16

3 x 0 = 0

3 x 2 = 6

3 x 4 = 12

3 x 8 = 24

26 tháng 6 2019

2 x 2 = 4

2 x 4 = 8

2 x 6 = 12

2 x 8 = 16

3 x 0 = 0

3 x 2 = 6

3 x 4 = 12

3 x 8 = 24

23 tháng 6 2016

Ta có: 4 - |x - 5| = 0

=> | x - 5 | = 4

<=> x - 5 = 4

       x - 5 = -4

<=> x = 4 + 5

       x = -4 + 5

<=> x = 9

       x = 1

23 tháng 6 2016

1) x=9 hoặc x=1

2)x=2 hoặc x=8/3

3)x=6 hoặc x=2

23 tháng 11 2023

1: \(2^x=64\)

=>\(x=log_264=6\)

2: \(2^x\cdot3^x\cdot5^x=7\)

=>\(\left(2\cdot3\cdot5\right)^x=7\)

=>\(30^x=7\)

=>\(x=log_{30}7\)

3: \(4^x+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)

=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)

=>\(2^x-1=0\)

=>\(2^x=1\)

=>x=0

4: \(9^x-4\cdot3^x+3=0\)

=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)

Đặt \(a=3^x\left(a>0\right)\)

Phương trình sẽ trở thành:

\(a^2-4a+3=0\)

=>(a-1)(a-3)=0

=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)

=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)

=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)

=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)

=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)

=>\(3^{x+1}-2=0\)

=>\(3^{x+1}=2\)

=>\(x+1=log_32\)

=>\(x=-1+log_32\)

6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\) 

=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)

Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)

Phương trình sẽ trở thành:

\(\dfrac{1}{b}+b=2\)

=>\(b^2+1=2b\)

=>\(b^2-2b+1=0\)

=>(b-1)2=0

=>b-1=0

=>b=1

=>\(\left(2+\sqrt{3}\right)^x=1\)

=>x=0

7: ĐKXĐ: \(x^2+3x>0\)

=>x(x+3)>0

=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)

=>\(x^2+3x=4^1=4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)

=>(x+5)(x-3)+8=x^2-1

=>x^2+2x-15+8=x^2-1

=>2x-7=-1

=>x=3(loại)

b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)

=>(x-4)(x+1)+x^2+3+5(x-1)=0

=>x^2-3x-4+x^2+3+5x-5=0

=>2x^2+2x-6=0

=>x^2+x-3=0

=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)

e: =>x^2-2x+1+2x+2=5x+5

=>x^2+3=5x+5

=>x^2-5x-2=0

=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)

g: (x-3)(x+4)*x=0

=>x=0 hoặc x-3=0 hoặc x+4=0

=>x=0;x=3;x=-4

11 tháng 11 2018

1) 2(3x + 5) - 6 = 0

    2(3x + 5)       = 6 + 0

    2(3x + 5)       = 6

        3x + 5        = 6 : 2

         3x + 5       = 3

         3x             = 5 - 3

         3x             = 2

           x             = 2 : 3

           x             = 2/3

2) 5x + 3(4 + 2x) = 25

    11x + 12         = 25

    11x                 = 25 - 12

    11x                 = 13

       x                  = 13 : 11

       x                  = 13/11

3) 3(4x + 1) + 2(x - 1) = 105

     14x + 1                  = 105

      14x                       = 105 - 1

       14x                      = 104

           x                      = 104 : 14 

           x                      = 104/14 = 52/7

4) 30 - [2(x - 3) - 2] = 14

           [2(x - 3) - 2] = 30 - 14

           [2(x - 3) - 2] = 16 

           2x - 8           = 16

           2x                = 16 + 8

           2x                = 24

             x                = 24 : 2

             x                = 12

5) 3(x - 8)(4x + 5) - 8(x - 8) = 0

     12x2 - 89x - 56 = 0

         x                   = 8 hoặc -7/12

6) 4x = 8

Vì: 41 = 4

     42 = 16

=> x thuộc tập hợp rỗng

2 tháng 2 2021

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

2 tháng 2 2021

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

14 tháng 6 2023

a) \(2\dfrac{3}{4}-x=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{11}{4}-x=\dfrac{3}{4}\)

\(\Rightarrow x=\dfrac{11}{4}-\dfrac{3}{4}=\dfrac{8}{4}=2\)

b) \(x:\dfrac{5}{6}=-\dfrac{3}{5}\)

\(\Rightarrow x=-\dfrac{3}{5}.\dfrac{5}{6}=-\dfrac{15}{30}=-\dfrac{1}{2}\)

c) \(1\dfrac{1}{3}+\dfrac{2}{3}:x=1\)

\(\Rightarrow\dfrac{2}{3}:x=1-1\dfrac{1}{3}\)

\(\Rightarrow\dfrac{2}{3}:x=-\dfrac{1}{3}\)

\(\Rightarrow x=\dfrac{2}{3}:-\dfrac{1}{3}\)

\(\Rightarrow x=-2\)

14 tháng 6 2023

d) \(x-\dfrac{1}{9}=\dfrac{8}{3}\)

\(\Rightarrow x=\dfrac{8}{3}+\dfrac{1}{9}\)

\(\Rightarrow x=\dfrac{25}{9}\)

e) \(\dfrac{1}{2}x+650\%x-x=-6\)

\(\Rightarrow\dfrac{1}{2}x+\dfrac{13}{2}x-x=-6\)

\(\Rightarrow x\left(\dfrac{1}{2}+\dfrac{13}{2}-1\right)-6\)

\(\Rightarrow6x=-6\)

\(\Rightarrow x=\dfrac{-6}{6}=-1\)

g) \(2\left(x-\dfrac{1}{2}\right)+3\left(-1+\dfrac{x}{3}\right)=x\left(\dfrac{2}{x}-1\right)\) \(\text{Đ}K:x\ne0\)

\(\Rightarrow2x-1-3+x=2-x\)

\(\Rightarrow3x-4=2-x\)

\(\Rightarrow3x+x=2+4\)

\(\Rightarrow4x=6\)

\(\Rightarrow x=\dfrac{6}{4}=\dfrac{3}{2}\)

a: \(\left(x^2+x\right)^2+2\left(x^2+x\right)-8=0\)

\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

hay \(x\in\left\{-2;1\right\}\)

b: \(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)\left(x+4\right)+24=0\)

\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x-12\right)+24=0\)

\(\Leftrightarrow\left(x^2+x\right)^2-14\left(x^2+x\right)+48=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x-8\right)=0\)

hay \(x\in\left\{-3;2;\dfrac{-1+\sqrt{33}}{2};\dfrac{-1-\sqrt{33}}{2}\right\}\)

 

24 tháng 8 2021

\(a,\left(x-2\right)\left(x-3\right)-3\left(4x-2\right)=\left(x-4\right)^2\\ \Leftrightarrow x^2-5x+6-12x+6=x^2-8x+16\\ \Leftrightarrow-9x-4=0\\ \Leftrightarrow x=-\dfrac{4}{9}\)

\(b,\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\\ \Leftrightarrow6x^2+3-14x+4=6x^2-6-4x+12\\ \Leftrightarrow10x=1\\ \Leftrightarrow x=\dfrac{1}{10}\)

\(c,x-\dfrac{2x-2}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\\ \Leftrightarrow30x-12x+12+5x+40=210+10x-10\\ \Leftrightarrow13x=148\\ \Leftrightarrow x=\dfrac{148}{13}\)

 

24 tháng 8 2021

\(d,\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5-x-2\right)\left(2x+5+x+2\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{7}{3}\end{matrix}\right.\)

\(e,x^2-5x+6=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

\(g,2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)

\(h,\left(x+\dfrac{1}{x}\right)^2+2\left(x+\dfrac{1}{x}\right)-8=0\left(x\ne0\right)\)

Đặt \(x+\dfrac{1}{x}=t\), pt trở thành:

\(t^2+2t-8=0\\ \Leftrightarrow\left(t-2\right)\left(t+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1-2x=0\\x^2+1+4x=0\left(1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\Delta\left(1\right)=16-4=12>0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)

Tick plzz

 

3 tháng 3 2020

Bài 1:

1. \(x-8=3-2\left(x+4\right)\)

\(x-8=3-2x-8\)

\(3x=3\Rightarrow x=1\)

2. \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(2x+6-3x+3=2\)

\(-x+9=2\Rightarrow x=7\)

3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(4x-20-3x+1=x-19\)

\(0x=0\Rightarrow x=0\)

4. \(7-\left(x-2\right)=5\left(2x-3\right)\)

\(7-x+2=10x-15\)

\(-11x=-24\Rightarrow x=\frac{24}{11}\)

5. \(32-4\left(0,5y-5\right)=3y+2\)

\(32-2y+20=3y+2\)

\(-5y=-50\Rightarrow y=10\)

6. \(3\left(x-1\right)-x=2x-3\)

\(3x-3-x=2x-3\)

\(0x=0\Rightarrow x=0\)

Bài 2:

1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)

\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)

\(\frac{10-5x-9+6x}{15}=0\)

\(x+1=0\Rightarrow x=-1\)

2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)

\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)

\(\frac{15-20x-4x-8}{20}=0\)

\(7-24x=0\)

\(24x=7\Rightarrow x=\frac{7}{24}\)

4 tháng 3 2020

Bạn giúp mình nốt nha ☺