Tìm x :
\(32^x.16^x=1024\)
Tickkkkkk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{4-x}}{16^5}=32^6\)
\(\Rightarrow\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
\(\Rightarrow\frac{2^{4-x}}{2^{20}}=2^{30}\)
\(\Rightarrow2^{4-x}=2^{30}.2^{20}\)
\(\Rightarrow2^{4-x}=2^{50}\)
\(\Rightarrow4-x=50\)
\(\Rightarrow x=-46\)
64 . 4x = 168
<=> 43. 4x = 416
=> 3 + x = 16
<=> x = 13
Vậy x = 13
2x.162 = 1024
<=> 2x. 28 = 210
=> x + 8 = 10
<=> x = 2
Vậy x = 2
b: Ta có: \(2^x\cdot16^2=1024\)
\(\Leftrightarrow2^x\cdot2^8=2^{10}\)
\(\Leftrightarrow x+8=10\)
hay x=2
256 x 6=512 x 3
512 x 3=256 x 6
999 x 2>1000
512 x 5>1024
1024<512 x 5
1024=512 x 2
512=256 x 2
256=128 x 2
128=64 x 2
64=32 x 2
32=16 x 2
Tìm x: \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16} +...-\dfrac{1}{1024}=\dfrac{x}{1024}\)
\(\dfrac{x}{1024}=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...-\dfrac{1}{1024}\)
\(\dfrac{2x}{1024}=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{512}\)
\(\Rightarrow\dfrac{x}{1024}+\dfrac{2x}{1024}=1-\dfrac{1}{1024}\)
\(\Rightarrow\dfrac{3x}{1024}=\dfrac{1023}{1024}\)
\(\Rightarrow3x=1023\)
\(\Rightarrow x=341\)
Lời giải:
$\frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...-\frac{1}{1024}$
$\frac{2x}{1024}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...-\frac{512}$
$\Rightarrow \frac{x}{1024}+\frac{2x}{1024}=1-\frac{1}{1024}$
$\frac{3x}{1024}=\frac{1023}{1024}$
$\Rightarrow 3x=1023$
$\Rightarrow x=341$
32x . 16x = 1024
=> (25)x . (24)x = 210
=> 25x . 24x = 210
=> 25x + 4x = 210
=> 29x = 210
=> 9x = 10
=> x = 10 : 9
=> x = 10/9
TL:
\(32^x.16^x=1024\)
\(\left(2^5\right)^x.\left(2^4\right)^x=1024\)
\(2^{9x}=2^{10}\)
\(\Rightarrow9x=10\Leftrightarrow x=\frac{10}{9}\)
Vậy............