Cho a và b là 2 số tự nhiên liên tiếp a chia 5 dư 1 và b chia 5 dư 4
CM a.b+1 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi thương của hai phép chia lần lượt là P và Q ,ta có
a=5P+1
b=5Q+4
=> (ab)+1<=>(5P+1)(5Q+4)+1
\(\Leftrightarrow25PQ+20P+5Q+5\)
\(\Leftrightarrow5\left(5PQ+4P+Q+1\right)⋮5\)
=>ab+1 chia hết cho 5
Ta có a chia 5 dư 1 ,
b chia 5 dư 4,
=> ab chia 5 dư 4
=> ab+1 chia hết cho 5
1. gọi 3 số tự nhiên liên tiếp đó là a-1, a, a+1
mà tích của 2 số sau lớn hơn tích của 2 số đầu => a(a+1)-2=a(a-1)
=> a^2+a-2=a^2-a
=>a^2 + a -2 - a^2 +a =0
=> 2a - 2 = 0
=> 2(a-1)=0
=> a-1 = 0
=> a=1
=> a-1 = 1-1 = 0
a+1 = 1+1=2
vậy 3 số tự nhiên liên tiếp đó là 0,1,2
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Dễ mà . Em học lớp 6 cũng làm được.
Giả sử a=(c+3) ; b =(d+2) (c ;d chia hết cho 5)
a.b=(c+3) . (d+2)
a.b=(c+3) . d + (c+3) .2
a.b=c.d+3.d+2.c+6
vì c.d ; 3.d 2.c chia het cho 5 ma 6 ko chia 5 du 1 suy ra a.b chia 5 du 1
Các bạn có kiểu chứng minh nào khác rõ ràng hơn ko ? Chứ giải kiểu này... giống đoán mò quá !
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Theo đề: a : 5 dư 2 =>a+3 : hết cho 5
b : 5 dư 3 =>b+2 : hết cho 5
=>ab+2*3=ab+6
mà ab:hết cho 5
6:5 dư 1
=>ab:5 dư 1
Bài 2:
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-n^2+12n-35\)
\(=12n-36⋮12\)
a chia 5 dư 1 \(\Rightarrow a=5k+1\)( \(k\in N^{\text{*}}\) )
b chia 5 dư 4 \(\Rightarrow b=5q-1\)( \(q\in N^{\text{*}}\) )
Vì a, b là 2 số liên tiếp nên \(a=b+1\)hoặc \(b=a+1\)
TH1: \(a=b+1\)
\(\Leftrightarrow5k+1=5q-1+1\)
\(\Leftrightarrow5k=5q-1\)
\(\Leftrightarrow5\left(k-q\right)=-1\)
\(\Leftrightarrow k-q=-\frac{1}{5}\)
Vì \(k;q\in N^{\text{*}}\)nên không có giá trị thỏa mãn
TH2: \(b=a+1\)
\(\Leftrightarrow5q-1=5k+1+1\)
\(\Leftrightarrow5q-5k=3\)
\(\Leftrightarrow q-k=\frac{3}{5}\)
Tương tự ta cũng thấy rằng không có giá trị nào thỏa mãn
p/s: bạn xem lại đề nhé, ta có thể lí luận đơn giản như sau : 2 số tự nhiên liên tiếp chia 5 có dư luôn có hiệu 2 số dư là 1 nên không có giá trị nào thỏa mãn
CM cơ mà,bạn làm kiểu gì thế