K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)  Xét ∆ABC có :

BD vuông góc với AC

CE vuông góc với AB 

=> H là trực tâm ∆ABC(1)

M là trung điểm là BC 

=> AM là trung tuyến ∆ABC(2)

=> AM vuông góc với BC

b) Vì AM là trung trực ∆ABC 

Vì AM là trung tuyến ∆ABC 

=> ∆ABC cân tại A

=> BM = MC

=> AD = DC

=> AE = EB

Xét ∆ vuông BMH và ∆ vuông CMH ta có :

HM chung

BM = MC 

=> ∆BMH = ∆CMH ( 2 cạnh góc vuông) 

=> BH = HC

Chứng minh tương tự ta có : 

=> AH = HB 

=> AH = HC 

=> HC = AH 

Xét ∆ vuông AEH và ∆ vuông HMC ta có : 

AH = HC (cmt)

EHA = MHC ( đối đỉnh) 

=> ∆AEH = ∆ HMC(cạnh huyền - góc nhọn)

=> AE = MC ( 2 cạnh tg ứng) 

Mà AE = EB 

=> MC = EB 

Mà BM = MC (cmt)

=> BE = BM 

=> ∆EBM cân tại E(dpcm)

Khó thật 

a: Xét ΔABD vuông tại D và ΔACD vuông tại D có

AB=AC

AD chung

=>ΔABD=ΔACD

=>BD=CD

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD

=>AE=AF 

=>ΔAEF cân tại A

c: CI+2AD

=3IK+2*3/2*AK

=3*(IK+AK)>3AI

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{EAC}\) chung

Do đó: ΔABD\(\sim\)ΔACE(g-g)

b) Xét ΔHEB vuông tại E và ΔHDC vuông tại D có 

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔHEB\(\sim\)ΔHDC(g-g)

Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)

hay \(HE\cdot HC=HB\cdot HD\)

a) Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED(ch-gn)

Suy ra: BA=BE(hai cạnh tương ứng) và DA=DE(hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=EC

Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

a: Xét ΔABC có

BE,CF là đừog cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

b: Xét tứ giác BHCM có

BH//CM

BM//CH

=>BHCM là hình bình hành

=>BC cắt HM tại trung điểm của mỗi đường

=>H,I,M thẳng hàng

Xét ΔBIH và ΔCIM có

IB=IC

IH=IM

BH=CM

=>ΔBIH=ΔCIM