1 phần 2x+1 phần 8x=3 phần 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{6}=\frac{x-1}{x}\left(đk:x\ne0\right)\)
\(< =>5x=6\left(x-1\right)< =>5x=6x-6\)
\(< =>6x-5x=6< =>x=6\left(tmđk\right)\)
\(\frac{1}{2}=\frac{x+1}{3x}\left(đk:x\ne0\right)\)
\(< =>3x=2\left(x+1\right)< =>3x=2x+2\)
\(< =>3x-2x=2< =>x=2\left(tmđk\right)\)
\(\frac{3}{x+2}=\frac{5}{2x+1}\left(đk:x\ne-2;-\frac{1}{2}\right)\)
\(< =>3\left(2x+1\right)=5\left(x+2\right)< =>6x+3=5x+10\)
\(< =>6x-5x=10-3< =>x=7\left(tmđk\right)\)
\(\frac{5}{8x-2}=-\frac{4}{7-x}\left(đk:x\ne\frac{1}{4};7\right)\)
\(< =>\frac{5}{8x-2}=\frac{4}{x-7}< =>5\left(x-7\right)=4\left(8x-2\right)\)
\(< =>5x-35=32x-8< =>32x-5x=-35+8\)
\(< =>27x=-27< =>x=-1\)
\(\frac{4}{3}=\frac{2x-1}{3}< =>4.3=\left(2x-1\right).3\)
\(< =>12=6x-3< =>6x=12+3\)
\(< =>6x=15< =>x=\frac{15}{6}=\frac{5}{2}\)
\(\frac{2x-1}{3}=\frac{3x+1}{4}< =>4\left(2x-1\right)=3\left(3x+1\right)\)
\(< =>8x-4=9x+3< =>9x-8x=-4-3\)
\(< =>9x-8x=-7< =>x=-7\)
\(\frac{4}{x+2}=\frac{7}{3x+1}\left(đk:x\ne-2;-\frac{1}{3}\right)\)
\(< =>4\left(3x+1\right)=7\left(x+2\right)< =>12x+4=7x+14\)
\(< =>12x-7x=14-4< =>5x=10\)
\(< =>x=\frac{10}{5}=2\left(tmđk\right)\)
\(-\frac{3}{x+1}=\frac{4}{2-2x}\left(đk:x\ne-1;1\right)\)
\(< =>-3\left(2-2x\right)=4\left(x+1\right)< =>-6+6x=4x+4\)
\(< =>6x-4x=4+6< =>2x=10\)
\(< =>x=\frac{10}{2}=5\left(tmđk\right)\)
\(\frac{x+1}{3}=\frac{3}{x+1}\left(đk:x\ne-1\right)\)
\(< =>\left(x+1\right)\left(x+1\right)=3.3\)
\(< =>x^2+2x+1=9< =>x^2+2x+1-9=0\)
\(< =>x^2+2x-8=0< =>x^2-2x+4x-8=0\)
\(< =>x\left(x-2\right)+4\left(x-2\right)=0< =>\left(x+4\right)\left(x-2\right)=0\)
\(< =>\orbr{\begin{cases}x+4=0\\x-2=0\end{cases}< =>\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\left(tmđk\right)\)
(x-1)(2x^2-8)=0
\(\Leftrightarrow\left(x-1\right)\left(2x^2-8\right)=0\\ \left(2x^3-8x-2x^2+8\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow x=1;x=\dfrac{8}{2}\)
3x^2-8x+5=0
áp dụng công thức bậc 2 ta có:
\(x=\dfrac{-\left(-8\right)\pm\sqrt{\left(-8\right)^2-4.3.5}}{2.3}\)
\(\Rightarrow x=\dfrac{5}{3};x=1\)
(7x-1).2x-7x+1=0
\(\Leftrightarrow\left(7x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{7};x=\dfrac{1}{2}\)
\(\frac{7x}{\left(2x+3\right).\left(2x-3\right)}:\frac{5}{8x-4}\)
\(=\frac{7x}{4x^2-9}\cdot\frac{8x-4}{5}=\frac{56x^2-28}{20x^2-45}\)
p/s: lần sau bn vt rõ hộ tớ cái đề....dùng công thức í
Lần sau viết đề cho dễ nhìn chút nhé! Viết vậy nhìn vô chả ai muốn giải đâu...=((( Mình cũng không chắc chắn là đúng...
a) \(A=3-\left|\frac{1}{3}-2x\right|\)
A lớn nhất khi \(\left|\frac{1}{3}-2x\right|\) bé nhất
Mà \(\left|\frac{1}{3}-2x\right|\ge0\forall x\in Q\)
Do đó \(A_{max}=3\Leftrightarrow\left|\frac{1}{3}-2x\right|=0\Leftrightarrow x=\frac{1}{6}\)
b) Nhìn không nổi đề bạn viết. Viết lại đề đi!!!!! Bạn viết kiểu đó ai mà muốn giải . Hay nói đúng hơn là không nhìn ra để giải...=((
c) \(C=\frac{1-\left|8x-\frac{2}{3}\right|}{2}\). Ta có
C lớn nhất khi \(1-\left|8x-\frac{2}{3}\right|\) lớn nhất. Mà \(1-\left|8x-\frac{2}{3}\right|\)lớn nhất khi \(\left|8x-\frac{2}{3}\right|\)bé nhất.
Ta thấy: \(\left|8x-\frac{2}{3}\right|\ge0\forall x\in Q\)
Do đó \(1-\left|8x-\frac{2}{3}\right|\) lớn nhất bằng 1
Thế vào đề bài ta có: \(C_{max}=\frac{1}{2}\Leftrightarrow\text{}\left|8x-\frac{2}{3}\right|=0\Leftrightarrow x=\frac{1}{12}\)
a: \(\dfrac{x^2-1}{3}=2\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=6\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)
=>x=1 hoặc x=5
b: \(\dfrac{3}{x-2}+\dfrac{7}{x+2}=\dfrac{8x}{x^2-4}\)
=>3x+6+7x-4=8x
=>10x+2=8x
=>2x=-2
hay x=-1
\(\dfrac{x+1}{3}\) + \(\dfrac{3\left(2x+1\right)}{4}\) = \(\dfrac{2x+3\left(x+1\right)}{6}\) +\(\dfrac{7+12x}{12}\)
\(\Leftrightarrow\)\(\dfrac{4\left(x+1\right)+9\left(2x+1\right)}{12}\)= \(\dfrac{2\left(2x+3\right)\left(x+1\right)+7+12x}{12}\)
\(\Leftrightarrow\) 4x + 4 + 18x + 9 = 4x2 + 10x + 6 +7 +12
\(\Leftrightarrow\) -4x2 + 4x + 18x - 10x = 6 + 7 + 12 - 4 - 9
\(\Leftrightarrow\) -4x2 + 12x = 12
\(\Leftrightarrow\)x (-4x+12)=12
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=12\\-4x+12=12\Rightarrow-4x=0\Rightarrow x=0\end{matrix}\right.\)
Vậy S =\(\left\{12;0\right\}\)
\(\frac{1}{2}x+\frac{1}{8}x=\frac{3}{4}\)
\(\Rightarrow x\left(\frac{1}{2}+\frac{1}{8}\right)=\frac{3}{4}\)
\(\Rightarrow\frac{5}{8}x=\frac{3}{4}\)
\(\Rightarrow x=\frac{3}{4}:\frac{5}{8}\)
\(\Rightarrow x=\frac{6}{5}\)
\(\frac{1}{2}x+\frac{1}{8}x=\frac{3}{4}\)
\(\Rightarrow x.\left(\frac{1}{2}+\frac{1}{8}\right)=\frac{3}{4}\),
\(\Rightarrow\frac{5}{6}x=\frac{3}{4}\)
\(\Rightarrow\frac{6}{5}\)