\(Cho\)\(a,b,c\inℕ^∗\)thỏa \(\left(a+bc\right)\left(b+ac\right)=7^n\)
\(CMR:n⋮2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em không biết nên cho vào phần nào nên cho tạm vào ôn tập cuối năm ạ =(
\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)
Bạn làm tương tự nha
\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)
Trước hết ta chứng minh bài toán quen thuộc:
Cho \(abc=1\) thì \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)
\(VT=\frac{1}{ab+b+1}+\frac{1}{bc+c+abc}+\frac{b}{abc+ab+b}=\frac{1}{ab+b+1}+\frac{1}{c\left(b+1+ab\right)}+\frac{b}{1+ab+b}\)
\(=\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}=\frac{1+ab+b}{ab+b+1}=1\)
\(P=\sum\frac{1}{a^2+2b^2+3}=\sum\frac{1}{a^2+b^2+b^2+1+2}\le\sum\frac{1}{2ab+2b+2}=\frac{1}{2}\sum\frac{1}{ab+b+1}=\frac{1}{2}\)
\(\Rightarrow P_{max}=\frac{1}{2}\) khi \(a=b=c=1\)
\(P=\sum\frac{1}{a^2+1+2\left(b^2+1\right)}\le\sum\frac{1}{2a+4b}=\frac{1}{2}\sum\frac{1}{a+b+b}\le\frac{1}{18}\sum\left(\frac{1}{a}+\frac{2}{b}\right)\)
\(\Rightarrow P\le\frac{1}{18}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{6}.3\sqrt[3]{\frac{1}{abc}}=\frac{1}{2}\)
\(\Rightarrow P_{max}=\frac{1}{2}\) khi \(a=b=c=1\)
\(a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right)\)
Tương tự: \(b+ca=\left(a+b\right)\left(b+c\right)\) ; \(c+ab=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)
Không biết cách làm đúng k nữa :D
Đặt: \(\hept{\begin{cases}a+bc=7^x\\b+ac=7^y\end{cases}}\)
TH1: Nếu \(7^x=7^y\)khi đó: n chẵn
\(\Leftrightarrow a+bc=b+ac\)
\(\Leftrightarrow\left(a-b\right)\left(1-c\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\c=1\end{cases}}\)
TH2:Nếu: \(7^x>7^y\)(*)
\(\Leftrightarrow a+bc>b+ac\)
\(\Leftrightarrow\left(a-b\right)\left(1-c\right)>0\)
\(\hept{\begin{cases}a>b\\c< 1\end{cases}\left(ktm\right)}\)hoặc: \(\hept{\begin{cases}a< b\\c>1\end{cases}\left(tm\right)}\)(1)
Đồng thời phải thỏa mãn điều kiện: \(a+bc⋮b+ac\)
\(\Leftrightarrow\left(a-b\right)\left(1-c\right)⋮b+ac\)
\(\Leftrightarrow\orbr{\begin{cases}a-b⋮b+ac\\1-c⋮b+ac\end{cases}\Leftrightarrow}\orbr{\begin{cases}a+ac⋮b+ac\\a\left(1-c\right)⋮b+ac\end{cases}\Leftrightarrow\orbr{\begin{cases}a+ac⋮b+ac\\a+b⋮b+ac\end{cases}}}\)(2)
Vì a,b,c thuộc N* nên:
\(\left(1\right)\Leftrightarrow\hept{\begin{cases}a+ac< b+ac\\ac+b>a+b\end{cases}}\)
Mặt khác: \(a+ac;a+b\ne0\)
Nên (2) sai
Dẫn đến (*) sai
Tương tự xét: \(7^x< 7^y\)(loại)
Vậy n chẵn
k cho tui