K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

Không biết cách làm đúng k nữa :D

Đặt: \(\hept{\begin{cases}a+bc=7^x\\b+ac=7^y\end{cases}}\)

TH1: Nếu \(7^x=7^y\)khi đó: n chẵn

\(\Leftrightarrow a+bc=b+ac\)

\(\Leftrightarrow\left(a-b\right)\left(1-c\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\c=1\end{cases}}\)

TH2:Nếu: \(7^x>7^y\)(*)

\(\Leftrightarrow a+bc>b+ac\)

\(\Leftrightarrow\left(a-b\right)\left(1-c\right)>0\)

\(\hept{\begin{cases}a>b\\c< 1\end{cases}\left(ktm\right)}\)hoặc: \(\hept{\begin{cases}a< b\\c>1\end{cases}\left(tm\right)}\)(1)

Đồng thời phải thỏa mãn điều kiện: \(a+bc⋮b+ac\)

\(\Leftrightarrow\left(a-b\right)\left(1-c\right)⋮b+ac\)

\(\Leftrightarrow\orbr{\begin{cases}a-b⋮b+ac\\1-c⋮b+ac\end{cases}\Leftrightarrow}\orbr{\begin{cases}a+ac⋮b+ac\\a\left(1-c\right)⋮b+ac\end{cases}\Leftrightarrow\orbr{\begin{cases}a+ac⋮b+ac\\a+b⋮b+ac\end{cases}}}\)(2)

Vì a,b,c thuộc N* nên:

\(\left(1\right)\Leftrightarrow\hept{\begin{cases}a+ac< b+ac\\ac+b>a+b\end{cases}}\)

Mặt khác: \(a+ac;a+b\ne0\)

Nên (2) sai

Dẫn đến (*) sai

Tương tự xét: \(7^x< 7^y\)(loại)

Vậy n chẵn

11 tháng 7 2019

k cho tui

3 tháng 7 2019

Em không biết nên cho vào phần nào nên cho tạm vào ôn tập cuối năm ạ =(

3 tháng 7 2019

a,b,c nguyên dương

9 tháng 1 2018

Bạn quy đồng làm từ từ là đc

20 tháng 9 2019

\(\sqrt{\frac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\frac{\left(a^2+ab+ac+bc\right)\left(b^2+bc+ba+ac\right)}{c^2+ca+cb+ab}}=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(c+a\right)\left(c+b\right)}}=a+b\left(a,b,c>0;a+b+c=1\right)\)

Bạn làm tương tự nha

\(\Rightarrow P=a+b+c+a+b+c=2\left(a+b+c\right)=2\)

NV
11 tháng 3 2019

Trước hết ta chứng minh bài toán quen thuộc:

Cho \(abc=1\) thì \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)

\(VT=\frac{1}{ab+b+1}+\frac{1}{bc+c+abc}+\frac{b}{abc+ab+b}=\frac{1}{ab+b+1}+\frac{1}{c\left(b+1+ab\right)}+\frac{b}{1+ab+b}\)

\(=\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}=\frac{1+ab+b}{ab+b+1}=1\)

\(P=\sum\frac{1}{a^2+2b^2+3}=\sum\frac{1}{a^2+b^2+b^2+1+2}\le\sum\frac{1}{2ab+2b+2}=\frac{1}{2}\sum\frac{1}{ab+b+1}=\frac{1}{2}\)

\(\Rightarrow P_{max}=\frac{1}{2}\) khi \(a=b=c=1\)

NV
11 tháng 3 2019

\(P=\sum\frac{1}{a^2+1+2\left(b^2+1\right)}\le\sum\frac{1}{2a+4b}=\frac{1}{2}\sum\frac{1}{a+b+b}\le\frac{1}{18}\sum\left(\frac{1}{a}+\frac{2}{b}\right)\)

\(\Rightarrow P\le\frac{1}{18}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{6}.3\sqrt[3]{\frac{1}{abc}}=\frac{1}{2}\)

\(\Rightarrow P_{max}=\frac{1}{2}\) khi \(a=b=c=1\)

NV
9 tháng 11 2019

\(a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right)\)

Tương tự: \(b+ca=\left(a+b\right)\left(b+c\right)\) ; \(c+ab=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)

2 tháng 3 2021

giúp  mình với nhé    thanghoa