Giải phương trình: \(x^3+2x^2+3x-6=0\)
Nhờ các cậu ạ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(0\le x\le\frac{3}{2}\)
ĐẶT: \(\hept{\begin{cases}\sqrt{x}=a\\\sqrt{3-2x}=b\end{cases}\Rightarrow}a;b\ge0\)
=> \(\hept{\begin{cases}x=a^2\\3-2x=b^2\end{cases}}\)
=> \(2a^2+b^2=3\)
KHI ĐÓ PT BAN ĐẦU SẼ ĐƯỢC: \(9+3ab=7a+5b\)
<=> \(6+3+3ab=7a+5b\) (*)
THAY \(2a^2+b^2=3\)vào PT (*) TA SẼ ĐƯỢC:
=> \(2a^2+b^2+3ab+6=2\left(2a+b\right)+3\left(a+b\right)\)
<=> \(\left(a+b\right)\left(2a+b\right)+6=2\left(2a+b\right)+3\left(a+b\right)\)
<=> \(\left(a+b-2\right)\left(2a+b-3\right)=0\)
<=> \(\orbr{\begin{cases}a+b=2\\2a+b=3\end{cases}}\)
TH1: \(a+b=2\Rightarrow\sqrt{x}+\sqrt{3-2x}=2\)
=> \(x+3-2x+2\sqrt{x\left(3-2x\right)}=4\)
<=> \(2\sqrt{3x-2x^2}=x+1\)
<=> \(4\left(3x-2x^2\right)=x^2+2x+1\)
<=> \(12x-8x^2=x^2+2x+1\)
<=> \(9x^2-10x+1=0\)
<=> \(\left(x-1\right)\left(9x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\x=\frac{1}{9}\end{cases}}\)
=> TA THẤY CÁC GIÁ TRỊ x đều TMĐK.
BẠN TỰ XÉT NỐT TRƯỜNG HỢP 2: \(2a+b=3\Rightarrow2\sqrt{x}+\sqrt{3-2x}=3\) nha
a) x + 3 = 0
\(\Leftrightarrow x=-3\)
Vậy phương trình có tập nghiệm \(S=\left\{-3\right\}\)
b) 2x - 1 = 0
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
c) x - 1 = 5x - 3
\(\Leftrightarrow x-5x=-3+1\)
\(\Leftrightarrow-4x=-2\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
\(4+2x\left(2x+4\right)=-x\)
\(4+2x.2x+8x=-x\)
\(4x+8x+x=-4\)
\(13x=-4\)
\(x=-\frac{4}{13}\)
Vậy pt có nghiệm là { -4/13 }
\(\frac{\left|x+1\right|}{x}=6\)
\(\Leftrightarrow\left|x+1\right|=6x\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=6x\\-\left(x+1\right)=6x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}1=5x\\-1=7x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=-\frac{1}{7}\end{cases}}\)
Không hiểu phần nào inb hỏi tớ
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
\(a,x^2-2x=0< =>x\left(x-2\right)=0< =>\orbr{\begin{cases}x=0\\x-2=0\end{cases}}< =>\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy nghiệm của phương trình là.....
\(b,x^2-7x-10=0< =>x^2-2x-5x-10=0< =>x\left(x-2\right)-5\left(x+2\right)=0\)
bn xem lại đề câu b, chút
\(x^3+2x^2+3x-6=0\\ \Leftrightarrow x^3-x^2+3x^2-3x+6x-6=0\\ \Leftrightarrow x^2\left(x-1\right)+3x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+3x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+3x+6=0\left(Vn\right)\end{matrix}\right.\\ \Leftrightarrow x=1\)