K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 8

Lời giải:

Áp dụng 
$\frac{3a}{2}=\frac{2b}{5}=\frac{a}{\frac{2}{3}}=\frac{b}{\frac{5}{2}}=\frac{a+b}{\frac{2}{3}+\frac{5}{2}}=\frac{19}{\frac{19}{6}}=6$

$\Rightarrow a=6:\frac{3}{2}=4$

$\Rightarrow b = 6:\frac{2}{5}=15$

$\Rightarrow 2a-3b = 2.4-3.15=-37$

co nhieu cau tuong tu tren mang ban tu tm hieu nhe

6 tháng 6 2018

not biết làm

28 tháng 3 2019

haha

Y
13 tháng 6 2019

+ \(2a^2+a=3b^2+b\)

\(\Rightarrow3a^2-3b^2+a-b=a^2\)

\(\Rightarrow3\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\)

\(\Rightarrow\left(a-b\right)\left(3a+3b+1\right)=a^2\) (*)

+ Gọi \(d=\left(a-b;3a+3b+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a-b⋮d\\3a+3b+1⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-3b⋮d\\3a+3b+1⋮d\end{matrix}\right.\)

\(\Rightarrow3a+3b+1+3a-3b⋮d\)

\(\Rightarrow6a+1⋮d\) (1)

+ \(\left\{{}\begin{matrix}a-b⋮d\\3a+3b+1⋮d\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)\left(3a+3b+1\right)⋮d^2\)

\(\Rightarrow a^2⋮d^2\Rightarrow a⋮d\Rightarrow6a⋮d\) (2)

+ Từ (1) và (2) \(\Rightarrow1⋮d\Rightarrow d=1\)

=> a - b và 3a + 3b + 1 là 2 số nguyên tố cùng nhau (**)

+ Từ (*) và (**) => đpcm

P/s : nếu tích 2 số nguyên tố cùng nhau là số cp thì mỗi số đều là số chính phương

19 tháng 4 2016

bài này căng

19 tháng 4 2016

thử làm đi. tau đang cần gấp