1/ Tính:
a) \(\frac{1}{2}-2\left(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+...+\frac{1}{48\cdot50}\right)\)
b) \(\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{63}+...+\frac{-1}{9999}\)
c) \(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-...-\frac{1}{6}-\frac{1}{2}\)
d) \(1-\frac{1}{2\cdot5}-\frac{1}{5\cdot8}-\frac{1}{8\cdot11}-...-\frac{1}{89\cdot92}-\frac{1}{92\cdot95}\)
2/ Tìm x:
\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)
a)\(\frac{1}{2}-2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{48.50}\right)\)
=\(\frac{1}{2}-\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+.....+\frac{2}{48.50}\right)\)
=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{48}-\frac{1}{50}\right)\)
=\(\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{50}\right)\)
=\(\frac{1}{50}\)
\(1)a)\frac{1}{2}-2\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{48.50}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{24.25}\right)\)
\(=\frac{1}{2}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{24}-\frac{1}{25}\right)\)
\(=\frac{1}{2}-\left(1-\frac{1}{25}\right)\)
\(=\frac{1}{2}-\frac{24}{25}=\frac{-23}{50}\)
\(\)