K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: H và E đối xứng nhau qua BA

nên AB là đường trực của HE

Suy ra: AH=AE

hay ΔHAE cân tại H

8 tháng 10 2021

1A; 2B; 3B; 4D; 5A

8 tháng 10 2021

???? 

 

12 tháng 12 2020

a/ Tứ giác AHBD có

M là trung điểm AB (GT)

M là trung điểm HD (do D đx H qua M)

AB cắt HD tại M

=> AHBD là hbh

Mà \(\widehat{AHB}=90^o\) (do ...)

=> AHBD là hcn

b/ Có AHBD là hcn

=> AD // HB ; AD = HB (t/c)

Mà HB = HE ; H,E,B thẳng hàng

=> AD // HE ; AD = HE 

=> AEHD là hbh

c/ Tứ giác AENB có

HE = HB ; H,E,B thẳng hàng

H là trung điểm AN (do N đx A qua H) EB cắt AN tại H

AH ⊥ BC tại H (E thuộc BC ; N thuộc AH)

=> AENB là hình thoi

d/ Xét t/g BNA có

H là trung điểm AH

M là trung điểm AB

BH cắt MN tại K

=> K là trọng tâm t/g BNA

=> BK = 2/3.BH

Mà BH = HE

=> BK = 2/3HE

=>2HE=3BK Lại có H,E,B thẳng hàng ; HE = HB

=> H là trung điểm BE

=> 2HE = BE

=>3BK=BE

2 tháng 9 2017

 a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 

suy ra AH=AD (1) 

Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 

suy ra AH=AE (2) 

Từ (1) và (2) suy ra AD=AE (3) 

Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90* 

do đó ^DAB+^BAH+ ^HAC+^CAE=180* 

tức là D, A, E thẳng hàng (4) 

từ (3) và (4) suy ra D và E đối xứng với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 

nên tam giác DHE vuông tại H. 

2 tháng 9 2017

bạn không giải đúng vấn đề cần chứng minh

12 tháng 10 2021

Cho t/giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho CF=BE. Vẽ tia Bx vuông góc AB & Cy vuông góc AC. Gọi I là giao điểm của Bx và Cy

a, C/m t/giác IEF cân 

b, Vẽ qua E đường thẳng song song với BC cắt AC tại D. C/m CD=CF

c, Gọi H là Giao điểm của EF và BC. C/m E, F đối xứng qua IH

Câu a ,b mình biết làm rồi còn câu c nữa thôi. SIN LOI MINH KO BIET LAM

20 tháng 12 2021

a: Xét tứ giác AFCH có

E là trung điểm của AC

E là trung điểm của HF

Do đó: AFCH là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AFCH là hình chữ nhật

23 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Xét tứ giác ABKF có

H là trung điểm chung của AK và BF

=>ABKF là hình bình hành

Hình bình hành ABKF có AK\(\perp\)BF

nên ABKF là hình thoi

c: Ta có: ABKF là hình thoi

=>KF//AB

Ta có: KF//AB

AB\(\perp\)AC

Do đó: KF\(\perp\)AC

Xét ΔCAK có

KF,CH là các đường cao

KF cắt CH tại F

Do đó: F là trực tâm của ΔCAK

=>AF\(\perp\)CK

23 tháng 12 2023

a: Xét tứ giác ADHE có

ˆADH=ˆAEH=ˆDAE=900���^=���^=���^=900

=>ADHE là hình chữ nhật

b: Xét tứ giác ABKF có

H là trung điểm chung của AK và BF

=>ABKF là hình bình hành

Hình bình hành ABKF có AK⊥⊥BF

nên ABKF là hình thoi

c: Ta có: ABKF là hình thoi

=>KF//AB

Ta có: KF//AB

AB⊥⊥AC

Do đó: KF⊥⊥AC

Xét ΔCAK có

KF,CH là các đường cao

KF cắt CH tại F

Do đó: F là trực tâm của ΔCAK

=>AF⊥⊥CK