Tìm các số mũ x biết rằng lũy thừa 5^2x-1 thỏa mãn điều kiện 100<5^2x-1 bé hơn hoặc bằng 5^6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(100< 5^{2x-1}\le5^6\)
\(\Leftrightarrow5^2< 5^{2x-1}\le5^6\)
\(\Leftrightarrow2x-1\in\left\{3;5\right\}\)
\(\Leftrightarrow2x\in\left\{4;6\right\}\)
hay \(x\in\left\{2;3\right\}\)
Ta có \(100< 5^{2x-1}< 5^6\)
\(\Rightarrow5^2< 5^{2x-1}< 5^6\)
Vì x là số tự nhiên nên \(5^{2x-1}\)là số tự nhiên do đó 2 < 2x - 1 < 6
Mặt khác để x là số tự nhiên nên 2x là số chẵn do đó 2x - 1 là số lẻ
Nên 2x - 1 = 3 hoặc 2x - 1 =5
Với 2x-1=3 nên 2x=4 suy ra x = 2
Với 2x-1=5 nên 2x=6 suy ra x = 3
Vậy x = 2 hoặc x = 3
\(100< 5^{2x-1}< 5^6\)
\(\Leftrightarrow10^2=5^2\cdot2^2< \frac{5^{2x}}{5}< 5^6\)
Ta có : 2x - 1 là số lẻ mà \(5^2\cdot2^2< 5^{2x-1}\)nên \(2x-1\ge3\)để thỏa mãn yêu cầu
\(\Rightarrow2x-1\in\left\{3;5\right\}\)
Với 2x - 1 = 3
2x = 4
x = 2
Với 2x - 1 = 5
2x = 6
x = 3
Ta có: 100 < 52x – 1 < 56
=> 52 < 100 < 52x-1 < 56
=> 2 < 2x – 1 < 6
=> 2 + 1 < 2x < 6 + 1
=> 3 < 2x < 7
Vì x ∈ N nên suy ra: x ∈ {2; 3} là thỏa mãn.
Ta có 100=52.4
\(\Rightarrow5^3\le5^{2x-1}< 5^6\)
\(\Rightarrow3\le2x-1< 6\)
\(\Rightarrow4\le2x< 7\)
\(\Rightarrow2\le x< 3,5\)
Mà \(x\) là số tự nhiên
\(\Rightarrow x=2\) hoặc \(x=3\)
\(100< 5^{2x-3}\le5^9\)
\(=>5^2< 100< 5^{2x-3}\le5^9\)
\(=>5^2< 5^{2x-3}\le5^9\)
=> 2 < 2x - 3 < hoặc = 9
Mà 2x - 3 lẻ => 2x - 3 thuộc {3 ; 5 ; 7 ; 9}
=> 2x thuộc {6 ; 8 ; 10 ; 12}
=> x thuộc {3 ; 4 ; 5 ; 6}
Vậy x thuộc {3 ; 4 ; 5 ; 6}
Ủng hộ mk nha ^_-
bạn nào đúng sớm mik k cho
nhớ ghi cách làm chứ kết quả mik biết
\(100< 5^{2x-3}\le5^9\)
\(=>5^2< 5^{2x-3}\le5^9\)
\(=>2< 2x-3\le9\)
\(=>5< 2x\le12\)
\(Dox\in N=>2x\in N=>2x\in\left\{6;8;10;12\right\}\)
\(=>x\in\left\{3;4;5;6\right\}\)
Vậy x thuộc {3 ; 4 ; 5 ; 6}
Vì x là số tự nhiên nên \(5^{2x-3}>100\) cũng có nghĩa là \(5^{2x-3}\ge125\)
Ta có : \(125\le5^{2x-3}\le5^9\)
\(\Rightarrow5^3\le5^{2x-3}\le5^9\)
=> 3 < 2x - 3 < 9
=> 6 < 2x < 12
=> 3 < x < 6
Vì x là số tự nhiên nên x \(\in\) {3; 4; 5; 6}
Lời giải:
$25< 3^n< 250$
$\Rightarrow 9< 3^n< 729$
$\Rightarrow 3^2< 3^n< 3^6$
$\Rightarrow 2< n< 6$
Vì $n$ là stn nên $n\in\left\{3; 4;5\right\}$ (đều thỏa mãn)
ta co \(3^3=27\) > 25
theo de bai, ta co 25 < \(3^n=3^n\) > \(3^2\left(1\right)\)
ta co \(3^5=\) 243 < 250 < \(3^6\)
theo de bai ra ta co \(3^n\) < 250 \(\Rightarrow3^n\) < \(3^6\left(2\right)\)
tu \(\left(1\right)va\left(2\right)\),suy ra 25 < \(3^3,3^4,3^5\)< 250
\(\Rightarrow n\in\left\{3,4,5\right\}\)
vay \(n\in\left\{3,4,5\right\}\)