\(\Delta ABC\) có \(\widehat{B}=60^0,BC=8cm,AB+AC=12cm\) .Tính độ dài cạnh AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(AH\perp BC\left(H\in BC\right)\)
Ta đặt AB = x => \(AH=x.sin_B=x.sin_{60}=x.\frac{\sqrt{3}}{2}\)
\(BH=x.cos_B=x.cos_{60}=\frac{x}{2}\Rightarrow HC=BC-BH=8-\frac{x}{2}=\frac{16-x}{2}\)
\(\Rightarrow AC=12-AB=12-x\)
Tam giác AHC vuông tại H, áp dụng định lý Pytago, ta có:
\(AH^2+HC^2=AC^2\Leftrightarrow\left(x.\frac{\sqrt{3}}{2}\right)^2+\left(\frac{16-x}{2}\right)^2=\left(12-x\right)^2\)
\(\Leftrightarrow3x^2+\left(16-x\right)^2=4\left(12-x\right)^2\Leftrightarrow x=5\)
Vậy AB = 5 cm
Mk giải theo cách này nha
X là cạnh AB => AC = 12-X
áp dụng Hệ quả của định lí hàm cos ta có :
\(sin\left(\widehat{B}\right)=\frac{BC^2+AB^2-AC^2}{2\cdot BC\cdot AB}\)
\(\Leftrightarrow sin\left(60\right)=\frac{8^2+x^2-\left(12-x\right)^2}{2\cdot8\cdot x}\)
Dùng Shift slove
=> \(x\approx7,8868cm\)
hok tốt .
Lời giải:
Kẻ $AH\perp BC$. $(H\in BC)$
Xét tam giác $ABH$ có:
$\frac{BH}{AB}=\cos 60^0=\frac{1}{2}$
$\Rightarrow AB=2BH$
Áp dụng định lý Pitago:
$AH^2=AB^2-BH^2=(2BH)^2-BH^2=3BH^2(1)$
$AH^2=AC^2-CH^2=(12-AB)^2-(8-BH)^2$
$=(12-2BH)^2-(8-BH)^2=3BH^2-32BH+80(2)$
Từ $(1);(2)$ suy ra $3BH^2=3BH^2-32BH+80$
$\Rightarrow BH=2,5$ (cm)
$\Rightarrow AB=2BH=5$ (cm)
Tam giác ABC vuông tại A, B=60.
⇒ Tam giác ABC là 1 nửa tam giác đều
⇒AB = \(\frac{BC}{2}\) =4cm.
AC=12‐4=8cm
Vậy AB=4cm
AC=8cm
Kẻ: \(AH\perp BC\).Đặt \(AB=2x\Rightarrow BH=x\Rightarrow AH=x\sqrt{3};HC=8-x\)
Áp dụng định lí Pi-ta-go có:
\(AC=\sqrt{\left(x\sqrt{3}\right)^2+\left(8-x\right)^2}=\sqrt{4x^2-16x+64}\)
Do \(AB+AC=12\Rightarrow2x+\sqrt{4x^2-16x+64}=12\)
Giải phương trình có x = 2,5
\(\Rightarrow AB=2x=2.2,5=5cm\)
Thay số vào tính được AC =))
Vẽ BH vuông góc với AC
Theo định lý Pythagore, ta có:
BC2=BH2+CH2=BH2+(AC-AH)2
=BH2+AH2+AC2-2AC.AH
Mà ta lại có:AH2+BH2=AB2 (định lý Pythagore, tam giác ABH vuông tại H)
và AH=1/2AB (do tam giác ABH là nửa tam giác đều)
Cho nên: BC2=AB2+AC2-2.1/2AB.AC=AB2+AC2-AB.AC (*)
Thay AB=28cm, AC=35cm vào (*), ta được:
BC2=1029=>BC=7\(\sqrt{21}\)cm
Vậy BC=7\(\sqrt{21}\)cm
Dựng AH vuông góc với BC, đặt AB = x, ta có : AH = x.sin B = x.sin60 = x.căn 3 / 2
HB = x.cos 60 = x/2 => HC = BC - HB = 8 - x/2 = (16 - x)/2
AC = 12 - AB = 12 - x
Trong tam giác vuông AHC : AH^2 + HC^2 = AC^2
hay (x. căn 3 /2)^2 + (16 - x)^2/4 = (12 - x)^2
<=> 3x^2 + (16 - x)^2 = 4(12 - x)^2
Giải phương trình này tìm được x = 5