Cho tam giác đều ABC.Trong tam giác đều ABC lấy điểm M sao cho MB = MC và góc BMC =90 độ.
a)Chứng minh tam giác ABM = tam giác AMC
b)Trong tam giác BMC lấy điểm E sao cho góc EBC =góc ECM = 30 độ. Chứng minh tam giác MEC cân
c)Giả sử điểm M nằm trong tam giác ABC sao cho MA /MB /MC =3 /4 /5 . Tính góc AMB
a) Xét tam giác: AMB và AMC có:
AM chung
BM=CM ( gt)
AB=AC ( tam giác ABC đều)
=> Tam giác AMB =Tam giác AMC (1)
b) Xét tam giác MBC vuông cân tại M
=> \(\widehat{MCB}=\frac{90^o}{2}=45^o\)
Tam giác ABC đều
=> \(\widehat{ACB}=60^o\)
=> \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)
\(\widehat{BCE}=\widehat{MCB}-\widehat{ECM}=45^o-30^o=15^o\)
=> \(\widehat{ACM}=\widehat{BCE}\)(2)
Từ (1) => \(\widehat{MAB}=\widehat{MAC}\) mà \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}=60^o\)
=> \(\widehat{MAB}=\widehat{MAC}=60^o:2=30^o\)
=> \(\widehat{EBC}=\widehat{MAC}\left(=30^o\right)\)(3)
Xét tam giác MCA và tam giác ECB
có: AC=CB ( tam giác ABC đều)
\(\widehat{ACM}=\widehat{BCE}\)( theo (2))
\(\widehat{EBC}=\widehat{MAC}\)( theo (3))
=> Tam giác MCA =Tam giác ECB
=> CM=CE
=> tam giác MEC cân
Câu c) Trên nửa mặt phẳng bờ AM không chứa điểm C dựng tam giác đều AMN
=> \(\widehat{AMN}=60^o\)
và NA=NM=AM
Ta có: \(\widehat{NAB}+\widehat{BAM}=\widehat{NAM}=60^o=\widehat{BAC}=\widehat{BAM}+\widehat{MAC}\)
=> \(\widehat{NAB}=\widehat{MAC}\)(1)
Xét tam giác NAB và tam giác MAC
có: AB=AC ( tam giác ABC đều)
NA=AM ( tam giác AMN đều)
\(\widehat{NAB}=\widehat{MAC}\)( theo (1))
=> Tam giác NAB=MAC
=> NB=MC
Suy ra: MN:BM:NB=MA:MB:MC=3:4:5
=> Tam giác NMB vuông tại M
=> \(\widehat{NMB}=90^o\)
=> \(\widehat{AMB}=\widehat{AMN}+\widehat{NMB}=60^o+90^o=150^o\)