Cho tam giác ABC cân tại A. Tia phân giác của góc B cắt AC ở E. Tia phân giác của góc C cắt AB ở D. Chứng minh DE song song BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha
a) ABD và EBD có: abd = ebd (bd la phân giác), BD chung
=> bằng nhau (cạnh huyền - góc nhọn)
=> AB = Be (2 cạnh tương ứng) => abe cân
b) ta có: AD = DE (vì tg ABD = tg EBD) mà DE < CD (Cạnh huyên là cạnh lớn nhất) nên AD < CD (ĐPCM)
a: \(\widehat{B}+\widehat{C}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)
hay \(\widehat{BIC}=115^0\)
b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)
nên ΔDAI cân tại D
a: \(\widehat{B}+\widehat{C}=130^0\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{130^0}{2}=65^0\)
hay \(\widehat{BIC}=115^0\)
b: Xét ΔDAI có \(\widehat{DAI}=\widehat{DIA}\)
nên ΔDAI cân tại D
\(\widehat{I_1}=\widehat{B_2}\)(2 góc slt của DE // BC) mà\(\widehat{B_1}=\widehat{B_2}\)(BI là phân giác góc ABC)\(\Rightarrow\widehat{I_1}=\widehat{B_1}\Rightarrow\Delta BDI\)cân tại D => BD = DI
\(\widehat{I_2}=\widehat{C_2}\)(2 góc slt của DE // BC) mà\(\widehat{C_1}=\widehat{C_2}\)(CI là phân giác góc ACB)\(\Rightarrow\widehat{I_2}=\widehat{C_1}\Rightarrow\Delta IEC\)cân tại E => IE = EC
Vậy DE = DI + IE = BD + CE (đpcm)
Vì DE song song với BC => \(\widehat{DIB}=\widehat{IBC}\) ( SLT) . Mà \(\widehat{IBC}=\widehat{DBI}\) ( BI là p/g của \(\widehat{ABC}\) ) => \(\widehat{DIB}=\widehat{DBI}\) theo định lý => tam giác DIB cân tại D => DB = DI
Vì DE song song với BC => \(\widehat{EIC}=\widehat{ICB}\)( SLT) .Mà \(\widehat{ECI}=\widehat{ICB}\) ( CI là p/g của \(\widehat{ECB}\) ) => \(\widehat{EIC}=\widehat{ECI}\) .Theo định lý => tam giác IEC cân tại E => EI = EC
Vì DE = DI + IE . Mà DI = DB ; IE = EC => DE = DB + CE
Vậy DE = DB + CE
CM: Do BE là tia p/giác của góc B => \(\widehat{B_1}=\widehat{B_2}=\widehat{\frac{B}{2}}\)
Do CD là tia p/giác của góc C => \(\widehat{C_1}=\widehat{C_2}=\widehat{\frac{C}{2}}\)
Mà \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
=> \(\widehat{C_1}=\widehat{B_1}\)
Xét t/giác ACD và t/giác ABE
có: \(\widehat{A}\) : chung
AC = AB (gt)
\(\widehat{C_1}=\widehat{B_1}\)
=> t/giác ACD = t/giác ABE(g.c.g)
=> AD = AE (2 cạnh t/ứng)
=> t/giác ADE cân tại A
=> \(\widehat{D_1}=\widehat{E_1}=\frac{180^0-\widehat{A}}{2}\) (1)
Ta có: t/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
từ (1) và (2) => \(\widehat{D_1}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (Đpcm)