K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

A = 22 + 23 + 24 + ... + 2121

⇒ A = (22 + 23) + (24 + 25) + ... + (2120 + 2121)

⇒ A = 12 + 22(22 + 23) +... + 2118(22 + 23)

⇒ A = 12 + 22.12 + ... + 2118.12

⇒ A = 12(1 + 22 + ... + 2118) ⋮ 3

⇒ A ⋮ 3

14 tháng 7 2019

Vì: A co 120 so hạng nên ta chia A thành 60 nhoms moi nhoms co 2 so hạng như sau:

\(A=2^2+2^3+\:2^4+\:2^5+\:..+\:2^{121}=2^2\left(1+2\right)+2^4\left(1+2\right)+......+2^{120}\left(1+2\right)=2^2.3+2^4.3+......+2^{120}.3=3\left(2^2+2^4+....+2^{120}\right)⋮3\Rightarrow A⋮3\)

Vì: A co 120 so hạng nên ta chia A thành 40 nhoms moi nhoms co 3 so hạng như sau:

\(A=\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+....+\left(2^{119}+2^{120}+2^{121}\right)=2^2\left(1+2+4\right)+2^5\left(1+2+4\right)+.....+2^{119}\left(1+2+4\right)=2^2.7+2^5.7+...+2^{119}.7=7\left(2^2+2^5+....+2^{119}\right)⋮7\Rightarrow A⋮7\)

*Sửa lại đề*

A = 21+ 22+ 23+ 24 + .. + 2100

A = (21+22) + (23+ 24) +...+ (299+ 2100)

A = 2.(1+2) + 23.(1+2) + .. + 299. (1+2)

A = 2.3 + 23. 3 + .. + 299.3

A = 3 . (21 + 23 + .... + 299)

Mà 3 chia hết cho 3 

=> A chia hết cho 3

19 tháng 3 2021

Ta có : 

\(A=2+2^2+2^3+2^4...2^{2010}\)\(^0\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=2.3+2^3.3+....+2^{2009}.3\)

\(=3\left(2+2^3+....+2^{2009}\right)⋮3\)

Ta có :

\(2+2^2+2^3+2^4+....+2^{2010}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+....+2^{2008}.7\)

\(=7\left(2+2^4+....+2^{2008}\right)⋮7\)

Vậy \(2^1+2^2+2^3+2^4+...+2^{2010}⋮3\) và \(7\)

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^96(1+2+2^2)+2^99

=7(1+2^3+...+2^96)+2^99 ko chia hết cho 7

10 tháng 10 2021

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

10 tháng 10 2021

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

13 tháng 11 2023

Sửa đề: \(A=2+2^2+2^3+2^4+...+2^{19}+2^{20}\)

=>\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{19}\right)⋮3\)

25 tháng 12 2021

\(A=1+2+2^2+2^3+....+2^{98}+2^{99}\\ \Leftrightarrow A=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+....+\left(2^{98}+2^{99}\right)\\ \Leftrightarrow A=3+2^2.\left(1+2\right)+2^4.\left(1+2\right)+....+2^{98}.\left(1+2\right)\\ \Leftrightarrow A=3+3.2^2+3.2^4+....+3.2^{98}\\ \Leftrightarrow A=3.\left(1+2^2+2^4+...+2^{98}\right)⋮3\)

21 tháng 11 2021

A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)

A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)

A=\(3.1+3.2^2+...+3.2^{19}\)

A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)

Vậy A\(⋮3\)

21 tháng 11 2021

A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)

A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)

A=3.1+3.22+...+3.2193.1+3.22+...+3.219

A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3

NÊN  A⋮3

29 tháng 12 2022

TK :

A=(2+22)+(23+24)+...+(22009+22010)

A=(1+2)(2+23+...+22009)=3(2+...+22009)⋮3

A=(2+22+23)+...+(22008+22009+22010 )

A=(1+2+22)(2+...+22008)=7(2+...+22008)⋮7

29 tháng 12 2022

Em xem lại đề nhé vì A như thế không chia hết cho 3 và cho 7

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17