K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

Ta có: \(A=\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=3\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4-1\right)\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^4-1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^8-1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^{16}-1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=\left(4^{32}-1\right)\left(4^{32}+1\right)\)

\(\Rightarrow3A=4^{64}-1\)

mà \(B=4^{64}-1\)

Vậy \(B=3A\)

6 tháng 1 2016

A)-4100
B)944
C)0
D)1007
E)-87
F)-45

6 tháng 1 2016

Bùi Anh Tuấn xuất sắc quá

10 tháng 7 2021

Ta có: `A = 1 + 4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6 + 4^7 + 4^8`

`= (1 + 4 + 4^2) + (4^3 + 4^4 + 4^5) + (4^6 + 4^7 + 4^8)`

`= 21 + 4^3 (1 + 4 + 4^2) + 4^6 (1 + 4 + 4^2)`

`= 21 + 4^3 . 21 + 4^6 . 21`

`= 21 (1 + 4^3 + 4^6)`

Vì \(21\left(1+4^3+4^6\right)⋮3\) nên \(A⋮3\)

24 tháng 5 2017

Ta có

A   =   1   +   15 ( 4 2   +   1 ) ( 4 4   +   1 ) ( 4 8   +   1 )     =   1   +   ( 4 2   –   1 ) ( 4 2   +   1 ) ( 4 4   +   1 ) ( 4 8   +   1 )     = 1 + 4 2 2 − 1 4 4 + 1 4 8 + 1 = 1 + 4 4 − 1 4 4 + 1 4 8 + 1 = 1 + 4 4 2 − 1 4 8 + 1   = 1 + 4 8 − 1 4 8 + 1 = 1 + 4 8 2 − 1   = 1 + 4 16 − 1 = 4 16   = 4.4 15   = 2.2.4 15 2 )

V à   B   =   4 3 5 + 4 5 3   = 4 3.5 + 4 5.3 = 4 15 + 4 15 = 2.4 15

V ì   A   =   2 . 2 . 4 15 ;   B   =   2 . 4 15   = >   A   =   2 B

Đáp án cần chọn là: C

3 tháng 7 2019

\(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\)

\(A=\frac{c}{abc+ac+c}+\frac{ac}{abc\cdot c+abc+ac}+\frac{1}{ac+c+1}\)

\(A=\frac{c}{ac+c+1}+\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}\)

\(A=\frac{ac+c+1}{ac+c+1}\)

\(A=1\)

18 tháng 7 2021

\(a+b+c=1=>\left\{{}\begin{matrix}1-a=b+c\\1-b=a+c\\1-c=a+b\\\end{matrix}\right.\)

\(=>A=\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)=\left(\dfrac{1-a}{a}\right)\left(\dfrac{1-b}{b}\right)\left(\dfrac{1-c}{c}\right)\)

\(=\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)\left(\dfrac{a+b}{c}\right)\)

bbđt AM-GM

\(=>A\ge\dfrac{2\sqrt{bc}.2\sqrt{ac}.2\sqrt{ab}}{abc}=\dfrac{8abc}{abc}=8\left(đpcm\right)\)

dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)

 

NV
18 tháng 7 2021

Đặt vế trái BĐT cần chứng minh là P

Ta có:

\(P=\left(\dfrac{a+b+c}{a}-1\right)\left(\dfrac{a+b+c}{b}-1\right)\left(\dfrac{a+b+c}{c}-1\right)\)

\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge\dfrac{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}}{abc}=8\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

17 tháng 11 2017

\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\)

\(\Leftrightarrow\dfrac{a+1}{a}.\dfrac{b+1}{b}\ge9\)

\(\Leftrightarrow ab+a+b+1\ge9ab\) ( vì ab >0)

\(\Leftrightarrow a+b+1\ge8ab\)

\(\Leftrightarrow2\ge8ab\) \(\left(a+b=1\right)\)

\(\Leftrightarrow1\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) \(\left(a+b=1\right)\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng)

\(\Leftrightarrowđpcm\)

9 tháng 5 2018

hahaĐúng rồi, cảm ơn bạn nhiều nha.

NV
8 tháng 4 2021

\(VT=\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{2}{\left(a+1\right)^2}+\dfrac{2}{\left(b+1\right)^2}+\dfrac{2}{\left(c+1\right)^2}\)

Mặt khác: 

\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)

Do đó:

\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+\dfrac{1}{c}}+\dfrac{1}{1+\dfrac{1}{a}}+\dfrac{1}{1+\dfrac{1}{b}}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

26 tháng 8 2021

cho em hỏi một tí ạ 

Chộ \(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}\)

áp dụng công thức gì đây ạ