K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right)\left(\frac{x-1}{\sqrt{x}+1}-2\right)\left(ĐK:x\ne\pm1\right)\)

\(=\left(\frac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{x-1-2\sqrt{x}-2}{\sqrt{x}+1}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{x-2\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2\left(\sqrt{x}-3\right)}{x-1}\)

\(=\frac{2\sqrt{x}-6}{x-1}\)

14 tháng 7 2019

\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right)\left(\frac{x-1}{\sqrt{x}+1}-2\right)\)

\(=\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-1}{\sqrt{x}+1}-\frac{2\sqrt{x}+2}{\sqrt{x}+1}\right)\)

\(=\left(\frac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-1-2\sqrt{x}-2}{\sqrt{x}+1}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-2\sqrt{x}-3}{\sqrt{x}+1}\right)\)

\(=\left(\frac{2\sqrt{x}\left(x-2\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\)

\(=\frac{2x\sqrt{x}-6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\)

Bài lm có sai sót chỗ nào thì mong bn sửa lại........

26 tháng 10 2020

\(\text{méo biết}\)

11 tháng 4 2021

= căn xy + căn x + căn y còn lại tự tính

2 tháng 5 2015

kết quả là bằng 2 đó bạn......................

15 tháng 7 2020

=\(\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)