K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(ĐKXĐ:x\ge0\)

\(\sqrt{x}+6\)luôn lớn hơn 4 thỏa mãn ĐKXĐ:

Vậy \(x\ge0\) là giá trị cần tìm

\(\sqrt{x}+6>4\Rightarrow\sqrt{x}>-2\)

Luôn đúng với mọi giá trị của x 

15 tháng 10 2016

ĐKXĐ : \(x\ge3\)

\(\sqrt{x-2+2\sqrt{x-3}}+\sqrt{x+6+6\sqrt{x-3}}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}+1\right)^2}+\sqrt{\left(\sqrt{x-3}+3\right)^2}=4\)

\(\Leftrightarrow\sqrt{x-3}+1+\sqrt{x-3}+3=4\)

\(\Leftrightarrow2\sqrt{x-3}=0\Leftrightarrow x=3\)(TMĐK)

24 tháng 11 2021

\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)

\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)

17 tháng 7 2023

a) \(\sqrt{x}>4\) có nghĩa là \(\sqrt{x}>\sqrt{16}\)

Vì \(x\ge0\) (x không âm) nên \(\sqrt{x}>\sqrt{16}\Leftrightarrow x>16\)

Vậy \(x>16\)

b) \(\sqrt{4x}\le4\) có nghĩa là \(\sqrt{4x}\le\sqrt{16}\)

Vì \(x\ge0\) (x không âm) nên \(\sqrt{4x}\le\sqrt{16}\Leftrightarrow4x\le16\Leftrightarrow x\le4\)

Vậy \(x\le4\)

c) \(\sqrt{4-x}\ge6\) có nghĩa là \(\sqrt{4-x}\ge\sqrt{36}\)

Vì \(x\ge0\) (x không âm) nên \(\sqrt{4-x}\ge\sqrt{36}\Leftrightarrow4-x\ge36\Leftrightarrow x\le-32\)

Vậy \(x\le-32\)

30 tháng 10 2023

a: ĐKXĐ: \(x\in R\)

\(\sqrt{x^2-4x+4}=7\)

=>\(\sqrt{\left(x-2\right)^2}=7\)

=>|x-2|=7

=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)

b: ĐKXĐ: x>=-3

\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)

=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)

=>\(3\sqrt{x+3}=6\)

=>\(\sqrt{x+3}=2\)

=>x+3=4

=>x=1(nhận)

30 tháng 10 2017

Ta có :\(x+6\sqrt{x+8}+4\sqrt{6-2x}=27\Leftrightarrow6\sqrt{x+8}+4\sqrt{6-2x}=27-x\) ( Điều kiện :-8 <= x <= 3 ) 

Mà VT = \(6\sqrt{x+8}+4\sqrt{6-2x}=2\sqrt{9.\left(x+8\right)}+2\sqrt{4.\left(6-2x\right)}\)
Áp dụng cauchy :
\(2\sqrt{9.\left(x+8\right)}\le9+\left(x+8\right)\) 
\(2\sqrt{4.\left(6-2x\right)}\le4+\left(6-2x\right)\)

=> \(VT=2\sqrt{9.\left(x+8\right)}+2\sqrt{4.\left(6-2x\right)}\le9+x+8+4+6-2x\le27-2x\)

=> \(VT\le VP\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}9=x+8\\4=6-2x\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=1\end{cases}\Leftrightarrow}x=1\left(tm\right)}\)

Vậy phương trình đã cho có 1 nghiệm x = 1 

8 tháng 10 2018

ĐKXĐ : \(x\ge1\)

\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)

\(\Leftrightarrow\)\(\sqrt{x-1+4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=5\)

\(\Leftrightarrow\)\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)

\(\Leftrightarrow\)\(\left|\sqrt{x-1}+2\right|+\left|\sqrt{x-1}-3\right|=5\)

\(\Leftrightarrow\)\(\sqrt{x-1}+\left|\sqrt{x-1}-3\right|=3\)

+) Với \(\sqrt{x-1}-3\ge0\)\(\Leftrightarrow\)\(x\ge10\) ta có : 

\(\sqrt{x-1}+\sqrt{x-1}-3=3\)

\(\Leftrightarrow\)\(2\sqrt{x-1}=6\)

\(\Leftrightarrow\)\(\sqrt{x-1}=3\)

\(\Leftrightarrow\)\(x-1=9\)

\(\Leftrightarrow\)\(x=10\) ( thỏa mãn ) 

+) Với \(\sqrt{x-1}-3< 0\)\(\Leftrightarrow\)\(x< 10\) ta có : 

\(\sqrt{x-1}-\sqrt{x-1}+3=3\)

\(\Leftrightarrow\)\(3=3\) ( thõa mãn với mọi \(x< 10\) ) 

Vậy \(x\le10\)

Chúc bạn học tốt ~ 

PS : mới lớp 8, sai thì thôi nhé :v 

16 tháng 7 2021

a) \(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,9\right)\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) \(\sqrt{x}=\sqrt{6+4\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}=2+\sqrt{2}\)

\(\Rightarrow Q=\dfrac{2+\sqrt{2}+1}{2+\sqrt{2}-3}=\dfrac{3+\sqrt{2}}{\sqrt{2}-1}=\dfrac{\left(3+\sqrt{2}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(=4\sqrt{2}+5\)

c) \(Q=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)

Để \(Q\in Z\Rightarrow4⋮\sqrt{x}-3\Rightarrow\sqrt{x}-3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{4;5;7;2;1\right\}\Rightarrow x\in\left\{16;25;49;4;1\right\}\)

a) Ta có: \(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)