K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2021

Trả lời:

1, A = | x - 3 | + 10 

Vì \(\left|x-3\right|\ge0\forall x\)

nên \(\left|x-3\right|+10\ge10\forall x\)

Dấu = xảy ra khi x - 3 = 0 <=> x = 3

Vậy GTNN của A = 10 khi x = 3

B = -7 + ( x + 1 )2 

Vì \(\left(x+1\right)^2\ge0\forall x\)

nên \(-7+\left(x+1\right)^2\ge-7\forall x\)

Dấu = xảy ra khi x + 1 = 0 <=> x = -1

Vậy GTNN của B = -7 khi x = -1

2, C = -3 - | x + 2 | 

Vì \(\left|x+2\right|\ge0\forall x\)

=> \(-\left|x+2\right|\le0\forall x\)

=> \(-3-\left|x+2\right|\le-3\forall x\)

Dấu = xảy ra khi x + 2 = 0 <=> x = -2

Vậy GTLN của C = -3 khi x = -2

D = 15 - ( x - 2 )2

VÌ \(\left(x-2\right)^2\ge0\forall x\)

=> \(-\left(x-2\right)^2\le0\forall x\)

=> \(15-\left(x-2\right)^2\le15\forall x\)

Dấu = xảy ra khi x - 2 = 0 <=> x = 2

Vậy GTLN của D = 15 khi x = 2

10 tháng 11 2017

câu a sử dụng BDT trị tuyệt đối, vì ko bt viết nên bạn tra mạng BDT này nha

câub:(x2+15)/(x2+3)=(x2+3+12)(x2+3)=1+12/(x2+3)

vì x2 luôn lớn hơn hoặc bằng 0

suy ra x2+3luôn lớn hơn hoặc bằng 3

12/(x2+3) luôn nhỏ hơn hoặc bằng  12/3=4

1+12/(x2+3) luôn nhỏ hơn hoặc bằng 1+4=5

Dấu bằng xảy ra khi x2=0=>x=0

Vậy MaxB=5 khi x=0

10 tháng 11 2017

A = |x+1| + 5 >=5 

Dấu "=" <=> x+1 = 0

<=>x=-1

Vậy Min A = 5 <=> x=-1

B = 1+12/x^2+3 <= 1+ 12/0+3 = 5

Dấu "=" <=> x=0

Vậy Max B = 5 <=> x=0

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

6 tháng 1 2016

A=10 

B=-7

C=-5

D=-3

E=15

F=3

6 tháng 1 2016

bạn giải chi tiết ra giúp mình đc ko?

 

3 tháng 9 2016

a/ M = -x2 - 2x + 7 = -(x2 + 2x - 7) = -(x2 + 2 . x + 1 - 8) = -[ (x + 1)- 8] = -(x + 1)2 + 8 \(\le\)8

Đẳng thức xảy ra khi: -(x + 1)2 = 0  => x = -1

Vậy giá trị lớn nhất của M là 8 khi x = -1

b/ N = -x2 + 4x + 5 = -(x2 - 4x - 5) = -(x2 - 2 . 2x + 22 - 9) = -[ (x - 2)- 9] = -(x - 2)2 + 9 \(\le\)9

Đẳng thức xảy ra khi: -(x - 2)2 = 0  => x = 2

Vậy giá trị lớn nhất của N là 9 khi x = 2

5 tháng 6 2018

Bài 1:

a) \(\frac{16}{15}.\frac{\left(-5\right)}{14}.\frac{54}{24}.\frac{56}{21}\)

\(=\frac{4.2.2}{5.3}.\frac{\left(-5\right)}{2.7}.\frac{3.3}{4}.\frac{8}{3}\)

\(=\frac{4.2.2.\left(-5\right).3.3.8}{5.3.2.7.4.3}\)

\(=\frac{-16}{7}\)

b) \(\frac{7}{3}.\frac{\left(-5\right)}{2}.\frac{15}{21}.\frac{4}{\left(-5\right)}\)

\(=\frac{7}{3}.\frac{\left(-5\right)}{2}.\frac{5}{7}.\frac{2.2}{\left(-5\right)}\)

\(=\frac{7.\left(-5\right).5.2.2}{3.2.7.\left(-5\right)}\)

\(=\frac{10}{3}\)

5 tháng 6 2018

Bài 2:

a) \(\frac{21}{24}.\frac{11}{9}.\frac{5}{7}=\frac{7}{8}.\frac{11}{9}.\frac{5}{7}=\frac{11.5}{8.9}=\frac{55}{72}\)

b) \(\frac{5}{23}.\frac{17}{26}+\frac{5}{23}.\frac{9}{26}\)

\(=\frac{5}{23}.\left(\frac{17}{26}+\frac{9}{26}\right)=\frac{5}{23}.1=\frac{5}{23}\)

c) \(\left(\frac{3}{29}-\frac{1}{5}\right).\frac{29}{3}=\frac{3}{29}.\frac{29}{3}-\frac{1}{5}.\frac{29}{3}\)

\(=1-1\frac{14}{15}=\frac{14}{15}\)

Bài 3:

a) x/5 = 2/5

=> x =2

b) -4/x = 20/14 = 10/7

=> -4/x = 10/7

=> x.10 = (-4).7

x.10 = - 28

x= -28 :10

x= -2,8

c) 4/7 = 12/x = 12/ 21

=> 12/x = 12/21

=> x = 21

d) 3/7 = x / 21 = 9/21

=> x/21 = 9/21

=> x= 9

10 tháng 7 2021

Bài 1 : 

a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi y = 1/2 

Vậy GTNN B là 3/4 khi y = 1/2 

c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)

Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2 

10 tháng 7 2021

Bài 3 : 

a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )

b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )

Bài 4 : 

\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)

Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)

Bài 5 : 

\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)

\(=2y.2x=4xy=VP\)( đpcm ) 

6 tháng 1 2016

tương tự baì đẳng trên mình vừa làm đấy

|A| <= 0 với mọi A

thì -|A| <= 0 vứi mọi A

tương tự với bình phương một số

Bài 1. Tính giá trị các lũy thừa sau: c) 53 d) 20200 e) 43 f) 12020 Bài 2. Viết kết quả các phép tính sau dưới dạng một lũy thừa: a) b) c) d) 18 12 3 :3 e) 15 15 4 .5 f) 3 3 16 :8 g) 8 4 4 .8 h) 3 2 3 .9 i) 5 2 27 . 3 . k) 4 4 12 12 24 :3 32 :16  m) 12 11 5 .7 5 .10  n) 10 10 2 .43 2 .85  Bài 3. Tính giá trị của biểu thức:    2 A 150 30: 6 2 .5;      2 B 150 30 : 6 2 .5;      2 C 150 30: 6 2 .5;    ...
Đọc tiếp

Bài 1. Tính giá trị các lũy thừa sau: c) 53 d) 20200 e) 43 f) 12020 Bài 2. Viết kết quả các phép tính sau dưới dạng một lũy thừa: a) b) c) d) 18 12 3 :3 e) 15 15 4 .5 f) 3 3 16 :8 g) 8 4 4 .8 h) 3 2 3 .9 i) 5 2 27 . 3 . k) 4 4 12 12 24 :3 32 :16  m) 12 11 5 .7 5 .10  n) 10 10 2 .43 2 .85  Bài 3. Tính giá trị của biểu thức:    2 A 150 30: 6 2 .5;      2 B 150 30 : 6 2 .5;      2 C 150 30: 6 2 .5;      2 D 150 30 : 6 2 .5. Bài 4. Tìm số tự nhiên x biết: a) (x-6)2 = 9 b) (x-2)2 =25   3 c) 2x - 2 = 8 d) ( e) ( f) 2 (x 1) 4   g) ( h) ( i) ( k) ( m) ( n) ( Bài 5. Tìm số tự nhiên x biết: a) 2x = 32 b) 2 .4 128 x  c) 2x – 15 = 17 d) 5x+1=125 e) 3.5x – 8 = 367 f) 3.2 18 30 x   g) 5 2x+3 -2.52 =52 .3 h) 2.3x = 10. 312+ 8.274 i) 5x-2 - 3 2 = 24 - (68 : 66 - 6 2 ) k) m) n) Bài 6. Tính giá trị của các biểu thức sau: a) 9 12 . 19 – 3 24 . 19 b) 165 . 23 – 2 18 .5 – 8 6 . 7 c) 212. 11 – 8 4 . 6 – 163 .5 d)12 . 52 + 15 . 62 + 33 .2 .5 e) 34 . 15 + 45. 70 + 33 . 5 Bài 7. Thu gọn các biểu thức sau: a) A= 1+2+22 +23 +24 +....+299+2100 b) B= 5+53 +55 +...+597+599

6
7 tháng 10 2021

thu gọn 7^3*7^5

16 tháng 8 2023

cặk cặk