K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

18 tháng 11 2021

b ơi b có kiến thức cơ bản không để mình chỉ hướng dẫn b làm th chứ làm hết dài lắm

 

18 tháng 11 2021

bạn cứ làm hết đi ạ rồi mình sẽ lựa chọn rồi rút ngắn lại ạ

 

15 tháng 11 2021

a, Vì \(\widehat{AEM}=\widehat{AFM}=\widehat{EAF}=90^0\) nên AEMF là hcn

b, Vì M là trung điểm BC, MF//AB(⊥AC) nên F là trung điểm AC

Mà F là trung điểm MN nên AMCN là hbh

c, Để AMCN là hcn thì \(\widehat{AMC}=90^0\) hay AM là đường cao tam giác ABC

Mà AM là trung tuyến nên để AMCN là hcn thì ABC vuông cân tại A

19 tháng 11 2016

(Hình bạn tự vẽ nha)

a ,

Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .

b ,

Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB

Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .

-> AC là đường trung trực của MN

->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .

-> Tứ giác MANC là hình thoi.

c ,

Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)

Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .

-> AE = EB (2)

Vì tứ giác MANC là hình thoi nên AF=FC (3)

Từ (1),(2) và (3) suy ra BE = FC (4)

Từ (1) và (4) suy ra : AE + BE = AF + FC

hay AB = AC

-> Tam giác ABC là tam giác vuông cân .

Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .

 

 

a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90

=> BEMF là hình chữ nhật (dh)

b, MF _|_ BA

BC _|_ AB

=> MF // BC 

M là trung điểm của AC (gt)

=> MF là đường trung bình của tam giác ABC (đl)

=> F là trung điểm của AB

F Là trung điểm của MN 

=> BMAN là hình bình hành (dh)

MN _|_ AB

=> BMAN là hình thoi (dh)

c, 

 S BEMF = 6X10= 60

ht