K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

21 tháng 5 2016

Ta có: n+1 chia hết cho 165

=> n+1 thuộc B(165) = { 0 ; 165;330;495;660.....}

=> n = { -1 ; 164 ; 329 ; 494;659;............}

Vì n chia hết cho 21 

=> n = 

27 tháng 12 2023

bây sai cả 5n+ 1 chia hết cho 7 thì kết quả là số tự nhiên 

 

23 tháng 1 2022

vbvcnvbnvvb

26 tháng 10 2023

a: Đặt \(A=\overline{2a3b}\)

A chia hết cho2  và 5 khi A chia hết cho 10

=>b=0

=>\(A=\overline{2a30}\)

A chia hết cho 9

=>2+a+3+0 chia hết cho 9

=>a+5 chia hết cho 9

=>a=4

Vậy: \(A=2430\)

b: \(42=2\cdot3\cdot7;54=3^3\cdot2\)

=>\(ƯCLN\left(42;54\right)=2\cdot3=6\)

=>\(ƯC\left(42;54\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

c: \(n+4⋮n+1\)

=>\(n+1+3⋮n+1\)

=>\(3⋮n+1\)

=>\(n+1\in\left\{1;-1;3;-3\right\}\)

=>\(n\in\left\{0;-2;2;-4\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;2\right\}\)

 

11 tháng 2 2018

 * n = 3k 
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7 

* n = 3k+1 
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1 

* n = 3k+2 
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3 

Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương) 

11 tháng 2 2018

câu thứ 2 đợi mình nghĩ đã nhé.

27 tháng 2 2017

Để 4n - 1 chai hết cho 7

Thì 4n - 1 thuộc B(7) = {0;7;14;21;28;35;42;................}

Suy ra 4n = {1;8;15;22;29;36;43;50;57;......................}

8 tháng 12 2017

a) Tổng ba số tự nhiên liên tiếp có dạng như sau:

(1k+1 )+ (1k+ 2) + (1k + 3) = 1k6

Mà 1k6 chia hết cho 3 (6 chia hết cho 3)

Nên tổng ba số tự nhiên liên tiếp chia hết cho 3

b) Tổng bốn số tự nhiên liên tiếp có dạng:

(1k + 1 ) + (1k + 2) + (1k + 3) + (1k + 4) = 1k10

1k10 không chia hết cho 4 nên tổng bốn số tự nhiên liên tiếp ko chia hết cho 4

16)

a) (15 + 7n) chia hết cho n

Theo quy tắc thì nếu (a + b) chia hết cho k thì a và b đều chia hết cho k

Vậy 15 chia hết cho 5 (bỏ đi 7n vì ở đây vẫn là n ẩn 0

Suy ra n thuộc U(15)

Ư(15) = { 1 ; 3 ; 5 ; 15 }

Thử lần lượt các số trên với 7n: bằng cách đem: 7n chia n

Ta có: 71 chia hết cho 1   ( 1 là n) => Chọn

73 không chia hết cho 3 (3 là n)   => Bỏ chọn 

75 chia hết cho 5            ..tương tự như trên..   => Chọn

7(15) vượt quá số có 2 chữ số => Bỏ chọn

Vậy n được là: 1 và 5

b) Tương tự như trên

17) 66a + 55b = 111 011?

Nhận xét: 111 011? là số có 7 chữ số

Mà trong khi 66a + 55b đều là số có 2 chữ số => Tổng trên tối đa là 4 chữ số.

4 < 7 => Không thể tìm được số tự nhiên a và b để thỏa mãn yêu cầu trên

18 tháng 9 2018

17

Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b

13 tháng 5 2017

1)    a) Ta có :

15 + 7n chia hết cho n

mà n chia hết cho n

nên 7n chia hết cho n 

=> (15 + 7n ) - 7n chia hết cho n

=> 15 chia hết cho n 

=> n thuộc Ư(15) nên n = 1 ; -1 ; 3 ; -3 ; 5 ; -5 ;15 ; -15

b) Ta có :

n + 28 chia hết cho n +4

mà n+4 chia hết cho n+4

nên n+28 - (n+4) chia hết cho n+4

=> 32 chia hết cho n+4

=>n+4 thuộc Ư(32) nên n+4=-1;1;-2;2;-4;4;8;-8;16;-16;32;-32

=> n lần lượt = -5;-3;-6;-2;-8;0;4;-12;12;-20;28;-36

phần 2 dài quá vs m cx không chắc đúng nên làm phần 3 luôn

3) vì số tự nhiên chia cho 18 dư 12 có dạng là : 18k + 12 

mà 18 chia hết cho 6

và 12 chia hết cho 6

nên 18k + 12 chia hết cho 6 

Vậy không tồn tại số tự nhiên chia cho 18 dư 12 , còn chia 6 dư 2

18 tháng 9 2018

2. Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b