Bài 1: Tính tổng sau:
a) 5/2 + 5/6 + 5/18 + 5/54 + 5/162
b) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
giải giúp mk và kb nha!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
Bài 1: 1/3+1/9+1/27+1/81+1/243+1/729
Đặt:
A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Nhân A với 3 ta có:
\(Ax3=3+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow Ax3-S=3-\frac{1}{243}\)
\(\Rightarrow2A=\frac{2186}{729}\)
\(\Rightarrow A=\frac{2186}{729}:2\)
\(\Rightarrow A=\frac{1093}{729}\)
1/ 2 + 2 = 4
2/ 4 + 4 = 8
3/ 8 + 8 = 16
4/ 16 + 16 = 32
5/ 32 + 32 =64
6/ 64 + 64 =128
7/ 128 + 128 =256
8/ 256 + 256 =512
9/ 521 + 512 =1033
10/ 2048 + 2048 =4096
B)A*2=(1/2+1/4+....+1/256)*2
=1+1/2+1/4+....+1/128)
A*2-A=(1+1/2+1/4+...+1/128)-(1/2+1/4+...+1/256)
=1-1/256
=255/256
a) Đặt A = \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\)
\(\Rightarrow\frac{1}{3}\times A=\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\)
Lấy \(A-\frac{1}{3}\times A\)theo vế ta có :
\(A-\frac{1}{3}\times A=\left(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\right)-\left(\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\right)\)
\(\Rightarrow\frac{2}{3}\times A=\frac{5}{2}-\frac{5}{486}\)
\(\Rightarrow\frac{2}{3}\times A=\frac{605}{243}\)
\(\Rightarrow A=\frac{605}{243}:\frac{2}{3}\)
\(\Rightarrow A=\frac{605}{162}\)
Vậy \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}=\frac{605}{162}\)
b) Đặt B = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)
=> \(\frac{1}{2}\times B=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}+\frac{1}{512}\)
Lấy B trừ \(\frac{1}{2}\times B\)theo vế ta có :
\(B-\frac{1}{2}\times B=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...++\frac{1}{128}+\frac{1}{256}\right)-\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{512}\right)\)
\(\Rightarrow\frac{1}{2}\times B=\frac{1}{2}-\frac{1}{512}\)
\(\Rightarrow\frac{1}{2}\times B=\frac{255}{512}\)
\(\Rightarrow B=\frac{255}{512}:\frac{1}{2}\)
\(\Rightarrow B=\frac{255}{256}\)
Vậy \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}=\frac{255}{256}\)