K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)

\(\Leftrightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\Leftrightarrow\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)

\(\Leftrightarrow1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)

\(\Leftrightarrow\frac{9a}{a+b}=\frac{9b}{b+c}\)

\(\Leftrightarrow\frac{a}{a+b}=\frac{b}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)=b\left(a+b\right)\)

\(\Leftrightarrow ab+ac=ab+b^2\)

\(\Leftrightarrow ac=b^2\)

\(\Leftrightarrow\frac{a}{b}=\frac{b}{c}\)

Ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Rightarrow\frac{\overline{ab}}{\overline{bc}}=\frac{a+b}{b+c}=\frac{\overline{ab}-\left(a+b\right)}{\overline{bc}-\left(b+c\right)}\)

\(=\frac{10a+b-a-b}{10b+c-b-c}=\frac{9a}{9b}=\frac{b}{a}\)

\(\frac{a+b}{b+c}=\frac{a}{b}=\frac{a+b-a}{b+c-b}=\frac{b}{c}\)

Vậy: \(\frac{a}{b}=\frac{b}{c}\left(b,c\ne0\right)\)

Bn ơi mk nghĩ đề phải là : giả thuyết \(c\ne0\)bn nhé.......

#kiseki no enzeru#

hok tốt

25 tháng 11 2018

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10a+11b+c}{a+2b+c}\)

\(\Rightarrow\frac{10a+b}{a+b}=\frac{10a+11b+c}{a+2b+c}\Rightarrow\left(10a+b\right).\left(a+2b+c\right)=\left(a+b\right).\left(10a+11b+c\right)\)

\(10a^2+20ab+10ac+ab+2b^2+bc=10a^2+11ab+ac+10ab+11b^2+bc\)

\(\Rightarrow9ac=9b^2\Rightarrow ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)

p/s: bài này khó chơi lém, đoạn mk giản đơn hai vế ko hiểu ib vs mk :))

21 tháng 10 2016

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)

=> a = b = c (đpcm)

 

 

 

 

 

21 tháng 10 2016

soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó

25 tháng 11 2018

\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

        \(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow b^2=ac\)

\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)

14 tháng 6 2017

\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{10a+b}{10b+c}=\frac{b}{c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow\frac{b^2}{c^2}=\frac{a^2}{b^2}\)

Áp dụng tính chất thêm một lần nữa , ta có :

\(\frac{b^2}{c^2}=\frac{a^2}{b^2}=\frac{b^2+a^2}{c^2+b^2}\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{b^2}{c^2}=\frac{b}{c}.\frac{a}{b}=\frac{a}{c}\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

11 tháng 12 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{\overline{ab}}{\overline{bc}}=\frac{10a+b}{10b+c}=\frac{10a}{10b}=\frac{b}{c}=\frac{a}{b}\)

Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow ac=b^2\left(đpcm\right)\)

Vậy \(ac=b^2\)

 

 

11 tháng 12 2016

\(\frac{ab}{bc}=\frac{b}{c}\) => \(abc=bcb\) => \(abc=cb^2\)

=> \(acb=cb^2\) => \(ac=b^2\) (\(đpcm\))

12 tháng 4 2018

Có : \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\)( áp dụng dãy tỉ số bằng nhau)

\(=\dfrac{111...11.\left(9a+b\right)}{111..11.10b}\)(có n chữ số 1 trong số 111..111)

\(\dfrac{999..99a+111..11b}{111..110b}=\dfrac{a}{c}=\dfrac{999..99a+a+111..11b}{111..110b+c}=\dfrac{100...000a+111...11b}{111..110b+c}\)=\(\dfrac{\overline{abbb...bb}}{\overline{bbb..bbc}}=\dfrac{a}{c}\)

20 tháng 7 2017

ta có : ab/bc=a.b/b.c=a/c <=> abbbb..b/bbb.bc=a.b.b.....b/b.b.b....b.c=a/c