Cho hình vuông ABCD , các điểm M, N thay đổi lần lượt nằm trên các cạnh BC, CD sao cho \(\widehat{MAN}=45^0\)(M,. N không trùng với các đỉnh của hình vuông). Gọi P, Q lần lượt là giao điểm của AM, AN với BD.
1) Chứng minh rằng: Tứ giác ABMQ là tứ giác nội tiếp.
2) Chứng minh rằng: Tỉ số diện tích của APQ và tam giác ANM không đổi