Cho tam giác ABC có AB< AC, trên cạnh AC lấy E sao cho AE = AB . Tia phân giác của góc A cắt BC tại D.
a. Chứng tỏ tam giác ABD = tam giác AED
b. Tia AB cắt ED tại K. Chứng minh AK = AC
c. Trên tia điối AB láy F sao cho FA = AB . Ct FE // AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
b: Xét ΔBDF và ΔEDC có
\(\widehat{BDF}=\widehat{EDC}\)
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
Do đó: ΔBDF=ΔEDC
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b: Xét ΔDBH và ΔDEC có
góc DBH=góc DEC
DB=DE
góc BDH=góc EDC
Do đó: ΔDBH=ΔDEC
c: Ta có: ΔDBH=ΔDEC
nên góc DHB=góc DCE
d: Ta có: AH=AB+BH
AC=AE+EC
mà AB=AE; BH=EC
nên AH=AC
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
b: Ta có: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\) và DB=DE
Xét ΔAEF và ΔABC có
\(\widehat{AEF}=\widehat{ABC}\)
AE=AB
\(\widehat{EAF}\) chung
Do đó: ΔAEF=ΔABC
=>AC=AF
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔABD=ΔEBD)
\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AM=EC(Hai cạnh tương ứng)
c) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)
mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)
và \(\widehat{BEA}+\widehat{AEC}=180^0\)(hai góc kề bù)
nên \(\widehat{AEC}=\widehat{EAM}\)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
+ Xét \(\Delta ABD;\Delta AED\)có :
AB = AE ( gt)
BAD = EAD ( AD là p/g góc A)
AD là cạnh chung
=> \(\Delta ABD=\Delta AED\left(c-g-c\right)\)
+ Vì \(\Delta ABD=\Delta AED\Rightarrow\widehat{ABD}=\widehat{AED}\)( hai góc tương ứng)
=> \(\widehat{ABC}=\widehat{AEK}\)
+ Xét\(\Delta AEK;\Delta ABC\)có :
góc AEK = góc ABC
AE = AB (gt)
góc A chung
=> \(\Delta AEK=\Delta ABC\)( c-g-c)
=> AK = AC ( hai cạnh tương ứng)
+ Vì \(\hept{\begin{cases}AF=AB\\AE=AB\end{cases}\left(gt\right)\Rightarrow AE=AF}\)
+ Cmtt câu a, có : \(\Delta EAH=\Delta FAH\)(c-g-c)
=> \(\widehat{AEH}=\widehat{AFH}\)( hai góc tương ứng)
Mà góc BAC = AEH + AFH ( BAC là góc ngoài từ đỉnh A của tg AEF)
+ Vì AD là p/g của góc A => \(\widehat{BAD}=\widehat{DAE}=\frac{1}{2}\widehat{BAC}\)
=> \(\widehat{BAC}=2\widehat{DAE}\)(2)
=> \(\widehat{AEH}=\widehat{DAE}\)=> FE // AD ( 2 góc so le trong =)