Biết \(x>1,\)tìm tất cả các giá trị của \(x\)đáp ứng biểu thức sau:
\(\frac{x-2017}{2018}-\frac{x-2018}{2017}=\frac{2017}{x-2018}-\frac{2018}{x-2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
\(\Leftrightarrow\left(\frac{x-2019}{2018}+1\right)+\left(\frac{x-2018}{2017}+1\right)=\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2016}{2015}+1\right)\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}=\frac{x-1}{2016}+\frac{x-1}{2015}\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}-\frac{x-1}{2016}-\frac{x-1}{2015}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x-1=0\)( vì \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\))
\(\Leftrightarrow x=1\)
Vạy x=1
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}\)
\(A=\frac{\left|x-2016\right|+2018}{\left|x-2016\right|+2018}-\frac{1}{\left|x-2016\right|+2018}\)
\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|x-2016\right|=0\)
\(\Leftrightarrow\)\(x=2016\)
Vậy GTNN của \(A\) là \(\frac{2017}{2018}\) khi \(x=2016\)
Chúc bạn học tốt ~
ta có x^2+y^2-6x+18+6y=0
(x-3)^2+(y+3)^2=0
x=3 và y=-3 thay vào biểu thức A bạn sẽ tính dc kq
Nguyễn Tiến Đạt
a)\(|3x-5|=|x+2|\)
=> Ta có 2 trường hợp
*) TH1: 3x-5=x+2
=>3x-x=2+5
=>2x=7
=>x=7:2\(\Rightarrow x=\frac{7}{2}\)
*)TH2: -3x+5=x+2
\(\Rightarrow5-3x=x+2\)
\(\Rightarrow5-2=x+3x\)
\(\Rightarrow3=4x\)
\(\Rightarrow x=3:4\Rightarrow x=\frac{3}{4}\)
Vậy \(x\in\left\{\frac{7}{2};\frac{3}{4}\right\}\)
\(\frac{x-3}{2017}-\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2017}{3}\)
\(\Leftrightarrow\frac{x-3}{2017}-1-\frac{x-2}{2018}-1=\frac{x-2018}{2}-1+\frac{x-2017}{3}-1\)
\(\Leftrightarrow\frac{x-2020}{2017}-\frac{x-2020}{2018}=\frac{x-2020}{2}+\frac{x-2020}{3}\)
\(\Leftrightarrow\frac{x-2020}{2017}-\frac{x-2020}{2018}-\frac{x-2020}{2}-\frac{x-2020}{3}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x-2020=0\Leftrightarrow x=2020\)
\(\frac{x-2017}{2018}-\frac{x-2018}{2017}=\frac{2017}{x-2018}-\frac{2018}{x-2017}\)
\(\Leftrightarrow\)\(\frac{2017\left(x-2017\right)-2018\left(x-2018\right)}{2017.2018}=\frac{2017\left(x-2017\right)-2018\left(x-2018\right)}{\left(x-2017\right)\left(x-2018\right)}\)
Do \(2017\left(x-2017\right)-2018\left(x-2018\right)\ne0\) nên \(\left(x-2017\right)\left(x-2018\right)=2017.2018\)
\(\Leftrightarrow\)\(x^2-4035x+2017.2018=2017.2018\)
\(\Leftrightarrow\)\(x\left(x-4035\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\left(l\right)\\x=4035\left(n\right)\end{cases}}\)
Vậy x = 4035