Phân tích đa thức thành nhân tử (pp đặt nhân tử chung
1/ \(x(y-z)+2(z-y)\)
2/\((2x-3y)(x-2)-(x+3)(3y-2x)\)
Mọi người giúp em với ạ. Em cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
$x^3+3x^2-16x-48=(x^3+3x^2)-(16x+48)=x^2(x+3)-16(x+3)$
$=(x+3)(x^2-16)=(x+3)(x-4)(x+4)$
2.
$4x(x-3y)+12y(3y-x)=4x(x-3y)-12y(x-3y)=(x-3y)(4x-12y)=4(x-3y)(x-3y)=4(x-3y)^2$
3.
$x^3+2x^2-2x-1=(x^3-x^2)+(3x^2-3x)+(x-1)=x^2(x-1)+3x(x-1)+(x-1)$
$=(x-1)(x^2+3x+1)$
a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)
b) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)
\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)
\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)
\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
c) \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)
a)\(a^4+a^3+a^3b+a^2b=\left(a^4+a^3b\right)+\left(a^3+a^2b\right)\)
\(=a^3\left(a+b\right)+a^2\left(a+b\right)\)
\(=\left(a^3+a^2\right)\left(a+b\right)\)
\(=a^2\left(a+1\right)\left(a+b\right)\)
b)\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left[\left(x-y+4\right)-\left(2x+3y-1\right)\right]\left[\left(x-y+4\right)+\left(2x+3y-1\right)\right]\)
\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
\(=\left(-x-4y+5\right)\left(4x+2y+3\right)\)
c)\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2\left(z-y+y-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)
\(=\left(y-z\right)\left(x^2-y^2\right)-\left(x-y\right)\left(y^2-z^2\right)\)
\(=\left(y-z\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)\left(y-z\right)\left(y+z\right)\)
\(=\left(y-z\right)\left(x-y\right)\left(x+y-y-z\right)\)
\(=\left(y-z\right)\left(x-y\right)\left(x-z\right)\)
\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)
\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)
x(y - z) + 2(z - y)
= x(y - z) - 2(y - z)
= (x - 2)(y - z)
(2x - 3y)(x - 2) - (x + 3)(3y - 2x)
= (2x - 3y)(x - 2) + (x + 2)(2x - 3y)
= (2x - 3y)(x - 2 + x + 2)
= 2x(2x - 3y)
1/\(x\left(y-z\right)+2\left(z-y\right)\)\(=\left(y-z\right)\left(x-2\right)\)
2/\(\left(2x-3y\right)\left(x-2\right)-\left(x+3\right)\left(3y-2x\right)\)\(=\left(2x-3y\right)\left(x-2+x+3\right)\)
\(=\left(2x-3y\right)\left(2x+1\right)\)