K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

abc=a+b+c => 1 = 1/ab + 1/bc + 1/ac 

2 = 1/a+1/b+1/c => 4 = 1/a^2 + 1/b^2 + 1/c^2 + 2/ab + 2/ac + 2/cb 

=> 4 = 1/a^2 + 1/b^2 + 1/c^2 + 2(1/ab + 1/ac + 1/bc) = M + 2 

=> M = 4 - 2 = 2

Mk làm bài đầu thôi,sáng nay mk làm cái tt cho

7 tháng 4 2018

             \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\)\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{c}{abc}+\frac{a}{abc}+\frac{b}{abc}\right)=4\)

\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\frac{a+b+c}{abc}=4\)

\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)  (do  a+b+c = abc)

\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

12 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{-1}{c}\Rightarrow\frac{a+b}{ab}=\frac{-1}{c}\)

\(\Rightarrow a+b=\frac{-ab}{c}\)

Tương tự : \(b+c=\frac{-bc}{a};a+c=\frac{-ac}{b}\)

thay vào A,ta được :

\(A=\frac{\frac{-ab}{c}.\frac{-bc}{a}.\frac{-ac}{b}}{abc}=\frac{-a^2b^2c^2}{abc}=-abc\)

12 tháng 6 2020

nhầm đoạn cuối : \(A=\frac{-a^2b^2c^2}{a^2b^2c^2}=-1\)

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

11 tháng 12 2019

Câu hỏi của vũ ngọc vân - Toán lớp 7 - Học toán với OnlineMath

Em nhấn vào link trên để xem đáp án.

4 tháng 3 2019

Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath

Học tốt=)

4 tháng 3 2019

tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2

15 tháng 8 2017

Làm trước câu 3:

Ta có:

\(\frac{1x}{a}+\frac{y}{b}=\frac{x+y}{c}\)

\(\Leftrightarrow1bcx+acy=abx+aby\)

\(\Leftrightarrow1x\left(bc-ab\right)=y\left(ab-ac\right)\)

\(\Leftrightarrow\frac{1x}{y}=\frac{a\left(b-c\right)}{b\left(C-a\right)}\)

Ta cần chứng minh

\(1xa^2+yb^2=\left(x+y\right)c^2\)

\(\Leftrightarrow1x\left(a^2-c^2\right)=y\left(c^2-b^2\right)\)

\(\Leftrightarrow\frac{1x}{y}=\frac{\left(c-b\right)\left(c+b\right)}{\left(a-c\right)\left(a+c\right)}=\frac{a\left(b-c\right)}{b\left(c-a\right)}\)

Vậy ta có ĐPCM

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

13 tháng 5 2021

a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`

a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12