Tính nhanh:\(\frac{19}{20}+\frac{1919}{2020}+\frac{191919}{202020}+...+\frac{1919...19}{2020...20}\) (số hạng cuối cùng có tử số là \(2011\) số \(19\) và mẫu số là \(2011\) số \(20\)).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải:
Ta có:
\(A=\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}=\frac{-9}{10^{2010}}+\frac{-9-10}{10^{2011}}=\frac{-9}{10^{2010}}+\frac{-9}{10^{2011}}+\frac{-10}{10^{2011}}\)
\(B=\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-9-10}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-9}{10^{2010}}+\frac{-10}{10^{2010}}\)
Vì \(\frac{10}{10^{2011}}< \frac{10}{10^{2010}}\rightarrow\frac{-10}{10^{2011}}>\frac{-10}{10^{2010}}\Rightarrow\frac{-9}{10^{2010}}+\frac{-9}{10^{2011}}+\frac{-10}{10^{2011}}>\frac{-9}{10^{2011}}+\frac{-9}{10^{2010}}+\frac{-10}{10^{2010}}\)
Vậy \(A>B\)( Bạn nhớ đọc kĩ lời giải nhé)
\(A-B=\frac{10}{10^{2010}}-\frac{10}{10^{2011}}=\frac{1}{10^{2009}}-\frac{1}{10^{2010}}>0\)
\(\Rightarrow A>B\)
\(A=\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}=\frac{-9}{10^{2010}}+\frac{-9-10}{10^{2011}}=\frac{-9}{10^{2010}}+\frac{-9}{10^{2011}}+\frac{-10}{10^{2011}}\)
\(B=\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-9-10}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-9}{10^{2010}}+\frac{-10}{10^{2010}}\)
Vì \(\frac{-10}{10^{2011}}>\frac{-10}{10^{2010}}\rightarrow A>B\)
19/20<4/3
vì 19/20 nhỏ hơn 1
vì 4/3 lớn hơn1
nên 19/20<4/3
\(A-B=\frac{10}{10^{2012}}-\frac{10}{10^{2011}}=\frac{1}{10^{2009}}-\frac{1}{10^{2010}}>0\)
\(\Rightarrow A>B\)
Gọi tổng đó là A:
\(A=\frac{19}{20}+\frac{19}{20}\times\frac{101}{101}+\frac{19}{20}\times\frac{10101}{10101}+........+\frac{19}{20}\times\frac{101...01}{101...01}\)
\(A=\frac{19}{20}\times2011=1910.45\)
Bài giải
\(\frac{19}{20}+\frac{1919}{2020}+\frac{191919}{202020}+...+\frac{1919...19}{2020...20}\) ( ( Vì mỗi phân số liền sau phân số kia đều được tính bằng số liền trước nhân với \(\frac{101}{101}\) ; \(\frac{10101}{10101}\) ; \(\frac{1010101}{1010101}\) ; ... ; từ đó ta tính được số số hạng của tổng là 1005 )
\(=\frac{19}{20}+\frac{1919\text{ : }101}{2020\text{ : }101}+\frac{191919\text{ : }10101}{202020\text{ : }10101}+...+\frac{1919...19\text{ : }10101...01}{2020...20\text{ : }10101...01}\) ( ở phân số cuối cùng ở tử số có 10101...01 gồm 1006 số 1 và 1005 số 0 và ở mẫu số cũng vậy )
\(=\frac{19}{20}+\frac{19}{20}+\frac{19}{20}+...+\frac{19}{20}\)
\(=\frac{19}{20}\cdot1005\)
\(=\frac{3819}{4}\)