tính -2^4 - (-2)^2 : (-√16/121) - (-√2/3)^2 : (-√64/3)
ai có thể giải giúp mình được không ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(2^2\right)^3\cdot4^5\)
\(=2^6\cdot2^{10}\)
\(=2^{16}=65536\)
b) Ta có: \(\left[\left(-4\right)^2\right]^2\cdot6\)
\(=16^2\cdot6\)
\(=256\cdot6=1536\)
c) Ta có: \(\frac{16}{25}\cdot\left(\frac{4}{5}\right)^3\)
\(=\left(\frac{4}{5}\right)^2\cdot\left(\frac{4}{5}\right)^3\)
\(=\left(\frac{4}{5}\right)^5\)
\(=\frac{1024}{3125}\)
d) Ta có: \(\left(\frac{121}{64}\right)^2\cdot\left(-\frac{64}{11}\right)^2\)
\(=\frac{121^2}{64^2}\cdot\frac{64^2}{11^2}\)
\(=11^2=121\)
e) Ta có: \(\left[\left(-3\right)^3\right]^3\cdot271:125\)
\(=\left(-27\right)^3\cdot\frac{271}{125}\)
\(=\frac{-5334093}{125}\)
43.25.16=(22)3.25.24=26.25.24=215
32.64.82=25.26.26=217
=> A=217:215=217-15=22=4
Đáp số: A=4
\(\frac{32.64.8^2}{4^3\cdot2^5\cdot16}=\frac{2^5.2^6.2^6}{2^6.2^5.2^3}\)
\(=\frac{2^{5+6+6}}{2^{6+5+3}}=\frac{2^{17}}{2^{14}}=2^{17-14}=2^3=8\)
Mình giải thích thêm nha
\(8^2=\left(2^3\right)^2=2^6\)
\(4^3=\left(2^2\right)^3=2^6\)
Bài 5:
1) Ta có: \(2x\left(x+1\right)-2x^2-2x\)
\(=2x^2+2x-2x^2-2x\)
=0
2) Ta có: \(3x\left(x-2\right)-3\left(x^2-2x\right)+4\)
\(=3x^2-6x-3x^2+6x+4\)
=4
3) Ta có: \(\left(x-1\right)\left(x-5\right)-x^2+6x-5\)
\(=x^2-6x+5-x^2+6x-5\)
=0
4) Ta có: \(\left(2x+1\right)\left(x-1\right)-2x^2+x-5\)
\(=2x^2-2x+x-1-2x^2+x-5\)
=-6
5) Ta có: \(\left(3x-2\right)\left(x-1\right)-3x^2+5x-4\)
\(=3x^2-3x-2x+2-3x^2+5x-4\)
=-2
6) Ta có: \(2x\left(x+1\right)-x\left(x+3\right)-x^2+x+5\)
\(=2x^2+2x-x^2-3x-x^2+x+5\)
=5
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{3}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{7}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{15}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{31}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{63}{64}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\Rightarrow64A=32+16+8+4+2+1\Rightarrow64A=63\Rightarrow A=\frac{63}{64}\)