Phân tích đa thức sau thành nhân tử
\(B=\left(a^2+b^2\right)^3+\left(c^2-a^2\right)^3-\left(b^2+c^2\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(a-b\right)\left(c-a\right)\left(c-b\right)\left(c+b+a\right)\)
a3(c - b2) + b3(a - c2) + c3(b - a2) + abc(abc - 1)
= a3c - a3b2 + ab3 - b3c2 + bc3 - a2c3 + a2b2c2 - abc
= a2b2c2 - b3c2 - (a2c3 - bc3) - (a3b2 - ab3) + (a3c - abc)
= b2c2(a2 - b) - c3(a2 - b) - ab2(a2 - b) + ac(a2 - b)
= (a2 - b)(b2c2 - c3 - ab2 + ac) = (a2 - b)[c2(b2 - c) - a(b2 - c)] = (a2 - b)(b2 - c)(c2 - a)
\(B=\left(a^2+b^2\right)^3+\left(c^2-a^2\right)^3-\left(b^2+c^2\right)^3\)
\(=\left(a^2+b^2+c^2-a^2\right)\left[\left(a^2+b^2\right)^2-\left(c^2-a^2\right)\left(a^2+b^2\right)+\left(c^2-a^2\right)^2\right]-\left(b^2+c^2\right)^2\)
\(=\left(b^2+c^2\right)\left[\left(a^2+b^2\right)^2-\left(c^2-a^2\right)\left(a^2+b^2\right)+\left(c^2-a^2\right)^2\right]-\left(b^2+c^2\right)^2\)
\(=\left(b^2+c^2\right)\left(a^4+2a^2b^2+b^4-a^2c^2+a^4-b^2c^2+a^2b^2-b^4-2b^2c^2-c^4\right)\)
\(=\left(b^2+c^2\right)\left(2a^4-c^4+3a^2b^2-a^2c^2-3b^2c^2\right)\)
ko chắc