a, Tìm GTNN của f(x) = (x-1)(x+2)(x+3)(x+6)
b,Tìm GTLN của A=(1−xn)(1+xn)+(2−yn)(2+yn)(n∈N∗)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,F_{\left(x\right)}=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x+6\right)\left(x^2+5x-6\right)\)
Đặt \(x^2+5x=a\)
\(\Rightarrow F_x=\left(a+6\right)\left(a-6\right)=a^2-36\)
\(\Rightarrow F_{min}=-36\Leftrightarrow a^2=0\)
\(\Rightarrow x^2+5x=0\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy GTNN của \(F_x=-36\Leftrightarrow x\in\left\{0;-5\right\}\)
\(b,A=\left(1-x^n\right)\left(1+x^n\right)+\left(2-y^n\right)\left(2+y^n\right)\)
\(=1-x^{2n}+4-y^{2n}\)
\(=5-x^{2n}-y^{2n}\)
\(\Rightarrow A_{max}=5\Leftrightarrow\hept{\begin{cases}x^{2n}=0\\y^{2n}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
a) x(x – y) + y(x – y) = x2 – xy + yx – y2 = x2 – xy + xy – y2 = x2 – y2
b) xn–1(x + y) – y( xn–1 + yn–1 ) = xn + xn–1y – yxn–1 – yn
= xn + xn–1y – xn–1y – yn = xn - yn
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
a) A = (x-1)(x+2)(x+3)(x+6)
A= [(x-1)(x+6)][(x+2)(x+3)]
A=(x^2 + 5x - 6)(x^2 + 5x + 6) ( cái này mik làm tắt)
A = (x^2+5x)^2 - 6^2
A= (x^2+5x)^2 - 36
...
a, GTNN của A là 0 vì nếu x>0 thì GTNN của x là 1 mà trong A có (x-1) có thể bằng (1-1) = 0 mà 0 nhân với bất kì số nào cũng bằng 0
Chọn A.
Ta có:
Do đó:
- Ta chứng minh dãy (yn) tăng.
Ta có:
- Ta chứng minh dãy (yn) bị chặn.
Trước hết ta chứng minh: xn ≤ 4(n – 1) (1)
* Với n = 2, ta có: x2 = 4x1 = 4 nên (1) đúng với n = 2
* Giả sử (1) đúng với n, tức là: xn ≤ 4(n – 1), ta có
Nên (1) đúng với n + 1. Theo nguyên lí quy nạp ta suy ra (1) đúng
Ta có:
Vậy bài toán được chứng minh.
a: ta có: \(x\left(x-y\right)+y\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\)
\(=x^2-y^2\)
b: Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y^n\)
\(=x^n-y^n\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
#)Giải :
a) \(f\left(x\right)=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x+6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Dấu ''='' xảy ra \(\Leftrightarrow\) \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
b) \(A=\left(1-x^n\right)\left(1+x^n\right)+\left(2-y^n\right)\left(2+y^n\right)\)
\(=1-x^{2n}+4-y^{2n}=5-x^{2n}-y^{2n}\le5\)
Dấu ''='' xảy ra \(\Leftrightarrow\) x = y = 0