cho tam giác ABC có M là trung điểm của BC, trên tia đối của tia MA lấy điểm E sao cho ME=MA
a)CM: tam giác MAB= tam giác MEC
b)CM: AC//BE
c)trên AB lấy điểm I. tia CE lấy điểm K sao cho BI=CK
d) CM: I,M,K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ hình ; bạn tự vẽ nha
a) Xét tam giác MAB và tam giác MEC
có AM =ME
BM=MC
góc AMB=gócBME
vạy tam giác MAB=tam giác MEC.(c.g.c)
b) vì tam giác AMC=tam giác MEC
=> góc EAC= góc EAC
=>AC//BE
c) Tam giác AMB=tam giác CME=>gócABC = gócBCE
=>Tam giác IMB =tam giác CMK(c.g.c)
=>góc IMB= góc CMK
T/C BMI+IMC=180
=>góc CMK +IMC=180
=>IMK=180
Vậy I,M,K thẳng hàng
Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK
Xét ABM và EMC có :
AM = ME
BM = CM
Góc AMB = góc CME ( đối đỉnh )
=> tam giac ABM = Tam giác EMC
Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC
Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong
=> AB // CE
c Xét tam giác AIB và tam gics CIK có :
AI = IC
BI = Ik
Góc AIB = góc CIK ( đối đỉnh )
=> tam giác AIB = tam giác CIK
b: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AC//BE
a) Xét ΔMAB và ΔMEC có
MB=MC (M là trung điểm BC)
^AMB=^EMC ( đối đỉnh)
MA= ME (gt)
Vậy ΔMAB = ΔMEC
b)Chứng minh ΔAMC= ΔBME tương tự câu (a)
Suy ra được ^CAM=^MEB
Do đó AC//BE
Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK
Xét ABM và EMC có : AM = ME BM = CM Góc AMB = góc CME ( đối đỉnh ) => tam giac ABM = Tam giác EMC Ta có : Tam giác AMB = tam giác EMC nên góc BAM = góc EMC Mặt khác : 2 góc BAM và AEC nắm vị trí so le trong => AB // CE c Xét tam giác AIB và tam gics CIK có : AI = IC BI = Ik Góc AIB = góc CIK ( đối đỉnh ) => tam giác AIB = tam giác CIK
a) Xét ∆ABM và ∆CME ta có :
BM = MC ( M là trung điểm BC)
AM = ME
AMB = CME ( đối đỉnh)
=> ∆ABM = ∆CME(c.g.c)
b) Xét ∆AMC và ∆BME ta có :
AM = ME
BM = MC
AMC = BME ( đối đỉnh)
=> ∆AMC = ∆BME(c.g.c)
=> ACM = MBE
Mà 2 góc này ở vị trí so le trong
=> AC//BE
c) Vì ∆AMB = ∆CME
=> ABC = BCK
Xét ∆IMB và ∆CMK ta có :
BM = MC
BI = CK
ABC = BCE (cmt)
=> ∆IMB = ∆CMK (c.g.c)
=> IMB = CMK
Ta có :
BMI + IMC = 180° ( kề bù)
Mà IMB = CMK
=> CMK + IMC = 180°
=> IMK = 180°
=> IMK là góc bẹt
=> I , M , K thẳng hàng