K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

Làmmmm

1/ \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)(ĐKXĐ:x\(\ne0\), x\(\ne\frac{1}{2}\))

= \(\frac{\left(1-2x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\frac{4x^2}{\left(2x-1\right)2x}-\frac{1}{2x\left(2x-1\right)}\)

\(=\frac{2x-1-4x^2+2x+4x^2-1}{2x\left(2x-1\right)}\)

\(=\frac{4x-2}{2x\left(2x-1\right)}=\frac{2\left(2x-1\right)}{2x\left(2x-1\right)}=\frac{1}{x}\)

KL:..............

31 tháng 3 2020

2/\(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}\)(ĐKXĐ : x\(\ne1\))

\(=\frac{x^2+2}{x^3-1}+\frac{2x-2}{x^3-1}-\frac{x^2+x+1}{x^3-1}\)

\(=\frac{x^2+2+2x-2-x^2-x-1}{x^3-1}=\frac{x-1}{x^3-1}=\frac{1}{x^2+x+1}\)

Kl:....................

16 tháng 8 2019

\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)

Vậy pt có vô số nghiệm

\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)

Mấy câu rút gọn bạn quy đồng nha

16 tháng 8 2019

bạn có thể giải ra giúp mik đc ko?

29 tháng 11 2019

Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)

\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)

\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)

29 tháng 11 2019

Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)

\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)

b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

Bài 1:

a) Ta có: \(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)

\(=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2}{x+2y}+\frac{y}{x-2y}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2\left(x-2y\right)}{\left(x+2y\right)\left(x-2y\right)}+\frac{y\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x-4y+xy+2y^2+4}{\left(x-2y\right)\cdot\left(x+2y\right)}\)

b) Ta có: \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)

\(=\frac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\frac{2x-2y}{x^2+xy+y^2}\)

c) Ta có: \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}\)

\(=\frac{xy}{2x-y}+\frac{x^2-1}{2x-y}\)

\(=\frac{x^2+xy-1}{2x-y}\)

d) Ta có: \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}\)

\(=\frac{2\left(x^2-y^2\right)+2y^2}{x}\)

\(=\frac{2x^2-2y^2+2y^2}{x}\)

\(=\frac{2x^2}{x}=2x\)

Bài 2:

a) Ta có: \(\frac{4x+1}{2}-\frac{3x+2}{3}\)

\(=\frac{3\left(4x+1\right)}{6}-\frac{2\left(3x+2\right)}{6}\)

\(=\frac{12x+3-6x-4}{6}\)

\(=\frac{6x-1}{6}\)

b) Ta có: \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)

\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)

\(=\frac{x^2-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)

c) Ta có: \(\frac{x+3}{x^2+1}-\frac{1}{x^2+2}\)

\(=\frac{\left(x+3\right)\left(x^2+2\right)}{\left(x^2+1\right)\left(x^2+2\right)}-\frac{x^2+1}{\left(x^2+2\right)\left(x^2+1\right)}\)

\(=\frac{x^3+2x+3x^2+6-x^2-1}{\left(x^2+1\right)\left(x^2+2\right)}\)

\(=\frac{x^3+2x^2+2x+5}{\left(x^2+1\right)\left(x^2+2\right)}\)

e) Ta có: \(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)

\(=\frac{3}{2x\left(x+1\right)}+\frac{2x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2}{x}\)

\(=\frac{3\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}+\frac{2x\left(2x-1\right)}{2x\left(x+1\right)\left(x-1\right)}-\frac{2\cdot2\cdot\left(x+1\right)\left(x-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{3x-3+4x^2-2x-4\left(x^2-1\right)}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{4x^2+x-3-4x^2+4}{2x\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x+1}{2x\left(x+1\right)\left(x-1\right)}=\frac{1}{2x\left(x-1\right)}\)

d) Ta có: \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)

\(=\frac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{3x+2-12x+8+10x-8}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{x+2}{\left(3x-2\right)\left(3x+2\right)}\)

f) Ta có: \(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x-y\right)}\)

\(=\frac{3x\cdot2\cdot\left(x-y\right)}{10\left(x+y\right)\left(x-y\right)}-\frac{x\cdot\left(x+y\right)}{10\left(x-y\right)\left(x+y\right)}\)

\(=\frac{6x^2-6xy-x^2-xy}{10\left(x-y\right)\left(x+y\right)}\)

\(=\frac{5x^2-7xy}{10\left(x-y\right)\left(x+y\right)}\)

30 tháng 6 2017

a VT=.\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)

=\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\frac{x-1+x\left(x-1\right)+2}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{x^2+2x+1}\)

\(=\frac{4x}{\left(x+1\right)^2}\)=VP

b.VT\(=\frac{2+x}{2-x}.\frac{\left(2-x\right)^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{4-2x+x^2}{2-x}\right)\)

=\(\frac{4-x^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{4-x^2}\right)=\frac{4-x^2}{4x^2}.\frac{2\left(2+x\right)-4}{4-x^2}\)

=\(\frac{2x}{4x^2}=\frac{1}{2x}\)=VP

c VT=.\(\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right).\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\left[\frac{3\left(x+y\right)+3x}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)

\(=\frac{3\left(2x+y\right)\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}.\frac{x-y}{3}\)

\(=x+y=\)VP

Vậy các đẳng thức được chứng minh

=

30 tháng 6 2017

C là xy mà ko phải x+y

22 tháng 6 2018

A = \(\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right).\left(x+1\right)}-\frac{x+3}{2\left(x+2\right)}\right).\frac{4x^2-4}{5}\)

A = \(\left(\frac{\left(x+1\right)^2+3.2-\left(x+3\right).\left(x-1\right)}{2\left(x-1\right).\left(x+1\right)}\right).\frac{4x^2-4}{5}\)

A = \(\left(\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right).\left(x+1\right)}\right).\frac{4\left(x^2-1\right)}{5}\)

A = \(\frac{10}{2\left(x-1\right).\left(x+1\right)}.\frac{4\left(x-1\right).\left(x+1\right)}{5}\)

A = 4