Tìm các số x; y; z biết
2x=3y=4z và 2x-y+z= 15
GIÚP MK VỚI Ạ, MK CẦN GẤP LẮM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)
Bài 1:
$x-1=|2x-1|\geq 0\Rightarrow x\geq 1$
$\Rightarrow 2x-1>0\Rightarrow |2x-1|=2x-1$. Khi đó:
$2x-1=x-1\Leftrightarrow x=0$ (không thỏa mãn vì $x\geq 1$)
Vậy không tồn tại $x$ thỏa đề.
Bài 2:
Nếu $x\geq \frac{1}{3}$ thì:
$3x-1=2x+3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{3}$ thì:
$1-3x=2x+3$
$\Leftrightarrow -2=5x\Leftrightarrow x=\frac{-2}{5}$ (tm)
Vậy......
Giải:
a) Vì (x-5) là Ư(6)={-6;-3;-2;-1;1;2;3;6}
Ta có bảng giá trị:
x-5=-6 ➜x=-1
x-5=-3 ➜x=2
x-5=-2 ➜x=3
x-5=-1 ➜x=4
x-5=1 ➜x=6
x-5=2 ➜x=7
x-5=3 ➜x=8
x-5=6 ➜x=11
Vậy x ∈ {-1;2;3;4;5;6;7;8;11}
b) Vì (x-1) là Ư(15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng giá trị:
x-1=-15 ➜x=-14
x-1=-5 ➜x=-4
x-1=-3 ➜x=-2
x-1=-1 ➜x=0
x-1=1 ➜x=2
x-1=3 ➜x=4
x-1=5 ➜x=6
x-1=15 ➜x=16
Vậy x ∈ {-14;-4;-2;0;2;4;6;16}
c) x+6 ⋮ x+1
⇒x+1+5 ⋮ x+1
⇒5 ⋮ x+1
⇒x+1 ∈ Ư(5)={-5;-1;1;5}
Ta có bảng giá trị:
x+1=-5 ➜x=-6
x+1=-1 ➜x=-2
x+1=1 ➜x=0
x+1=5 ➜x=4
Vậy x ∈ {-6;-2;0;4}
Chúc bạn học tốt!
a) Ta có (x-5)là Ư(6)
\(\Rightarrow\)(x-5)\(\in\)\(\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
\(\Rightarrow\)x\(\in\)\(\left\{4;3;2;-1;6;7;8;11\right\}\)
Vậyx\(\in\)\(\left\{4;3;2;-1;6;7;8;11\right\}\)
b)Ta có (x-1) là Ư(15)
\(\Rightarrow\left(x-1\right)\in\left\{-15;-5;-3;-1;1;3;5;15\right\}\)
\(\Rightarrow\)x\(\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)
Vậy x\(\in\left\{-14;-4;-2;0;2;4;6;16\right\}\)
c)Ta có (x+6) \(⋮\) (x+1)
=(x+1)+5\(⋮\) (x+1)
Mà (x+1)\(⋮\) (x+1) nên để (x+6) \(⋮\) (x+1) thì 5 \(⋮\) (x+1)
Nên (x+1)\(\in\)Ư(5)
\(\Rightarrow\)x+1\(\in\)\(\left\{5;1;-1;-5\right\}\)
\(\Rightarrow x\in\left\{4;0;-2;-6\right\}\)
Bài 1 :
\(\left|2x-1\right|=x-1\)ĐK : \(x\ge1\)
TH1 : \(2x-1=x-1\Leftrightarrow x=0\)(ktm)
TH2 : \(2x-1=1-x\Leftrightarrow3x=2\Leftrightarrow x=-\frac{2}{3}\)(ktm)
Vậy biểu thức ko có x thỏa mãn
Bài 2 :
\(\left|3x-1\right|=2x+3\)ĐK : x >= -3/2
TH1 : \(3x-1=2x+3\Leftrightarrow x=4\)
TH2 : \(3x-1=-2x-3\Leftrightarrow5x=-2\Leftrightarrow x=-\frac{2}{5}\)
a) Để P là phân số thì x-3 khác 0
và x khác -3
b) 5/1
0/-4
1/-3
c) để P là số nguyên thì x+1 chia hết cho x-3
--> (x-3)+4 chia hết cho x-3
--> 4 chia hết cho x-3
--> x-3 thuộc Ư(4)={1;2;4;-1;-2;-4}
Với x-3=1 => x=4
Với x-3=2 => x=5
Với x-3=4 => x=7
Với x-3=(-1) =>x=2
Với x-3=(-2) => x=1
Với x-3=(-4) => x=(-1)
Vậy.....
1.x=1,06;1,07;1,08;1,08;1,09;,1,10;1,11;1,12;..................................................................9,00
ta có 2x = 3y => 2x/3 = y
2x=4z => 2x/4 = z => x/2 = z
thay vào 2x - y + z = 15
2x - 2x/3 + x/2 =15
x(2-2/3+1/2) = 15
11x/6 = 15
11x= 90
x=90/11
y=60/11
z=45/11
Từ \(2x=3y=4z\) \(\Rightarrow\hept{\begin{cases}2x=3y\\3y=4z\end{cases}}\)
Từ \(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{4}=\frac{y}{2}.\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{12}=\frac{y}{8}\)( 1 )
Từ \(3y=4z\)\(\Rightarrow\)\(\frac{y}{4}=\frac{z}{3}=\frac{y}{4}.\frac{1}{2}=\frac{z}{3}.\frac{1}{2}\)\(\Rightarrow\)\(\frac{y}{8}=\frac{z}{6}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{12}=\frac{y}{8}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{8}=\frac{z}{6}=\frac{2x}{24}=\frac{y}{8}=\frac{z}{6}=\frac{2x-y+z}{24-8+6}=\frac{15}{22}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{15}{22}\\\frac{y}{8}=\frac{15}{22}\\\frac{z}{6}=\frac{15}{22}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}22x=180\\22y=120\\22z=90\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{90}{11}\\y=\frac{60}{11}\\z=\frac{45}{11}\end{cases}}\)