1 và 3 co đươcj gọi là 2 số nguyên tố cùng nhau hay không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Đồng Minh Phương - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
Gọi d là ƯC(5n+1;6n+1), ta có:
(5n+1).6-(6n+1).5 chia hết cho d
<=> (30n+6)- (30n+5) chia hết cho d
<=> 1 chia hết d
=> d=1
Vậy 5n+1 và 6n+1 là hai số nguyên tố cùng nhau
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
A=13.15.19+21.27.23=13.3.5.19+3.7.27.23
= 3.(13.5.19+7.27.23) chia hết cho 3
=> A là hợp số
B=5.7.9.11-10.17.4=5.7.9.11-5.2.17.4
B=5.(7.9.11-2.17.4) chia hết cho 5
=>B là hợp số
có nha bạn