K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

A C B H M I 1 2

HÌNH XẤU THÔNG CẢM

a) MI // AC nên \(\widehat{MIA}=\widehat{IAC}=90^o\)

vậy tứ giác ACMI là hình thang vuông

b) CM= CA nên \(\Delta ACM\)cân tại C \(\Rightarrow\widehat{CMA}=\widehat{CAM}\)

Mà \(\widehat{CMA}+\widehat{A_2}=90^o\)\(\widehat{CAM}+\widehat{A_1}=90^o\)

\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)

Xét 2 tam giác vuông : \(\Delta AMH\)và \(\Delta AMI\)có :

\(AM\)chung ; \(\widehat{A_1}=\widehat{A_2}\)( cmt )

\(\Rightarrow\Delta AMH=\Delta AMI\)( cạnh huyền - góc nhọn )

\(\Rightarrow AI=AH\)

c) AB + AC = ( AI + BI  ) + CM = AH + CM + BI

Mà \(\Delta BIM\)vuông tại I nên BI < BM

\(\Rightarrow AB+AC=AH+CM+BI< AH+CM+BM=AH+BC\)

5 tháng 10 2018

a, Vì AC // MI

=> Tứ giác ACMI là hình thang

Vì góc A=90 độ

=> Tứ giác ACMI là hình thang vuông

7 tháng 9 2018

A B C M I H

a) Theo đề bài ta có :

\(MI//CA\) ( GT)

=> ACMI là hình thang ( định nghĩa)

Xét hình thang ACMI ta có :

\(\widehat{A}=90^o\)

=> ACMI là hình thang vuông  

9 tháng 9 2018

@TrầnHươngGiang phần b,c đâu bn'

1 tháng 2 2018

Đáp án cần chọn là: C

Tứ giác ACMI có: MI //AC (gt) và A ^ = 90 °  (gt) nên là hình thang vuông.

11 tháng 8 2021

mọi người ơi giúp mình với

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

17 tháng 9 2018

Bạn tự vẽ hình nhé

a) Tứ giác ACMI có

MI // CA (gt)

Góc BAC = 90 độ (gt)

=> Tứ giác ACMI là hình thang vuông

b) Ta có: AM = CA (gt)

=> Tam giác MAC cân tại C (đn)

=> Góc AMC = góc CAM ( t/c) (2)

MI // AC (gt) => góc CAM = IMA (1)

Từ (1) và (2) => gics IMA = CMA

MI // AC (gt); AC \(\perp\) BA (gt)

=> MI \(\perp\)BA tại I(t/c)

=> Góc MIA = 90 độ

Xét \(\Delta MIA\)\(\Delta MHA\) có:

Góc MIA = MHA (= 90 độ) ( AH \(\perp\)BC)

góc IMA = CMA

Cạnh MA chung

=> \(\Delta MIA\) = \(\Delta MHA\)(chgn)

=> AI = AH ( 2 cạnh t/ư)

17 tháng 9 2018

giúp mk câu c vs

29 tháng 12 2023

a: Xét tứ giác AMHN có

AM//HN

AN//HM

Do đó: AMHN là hình bình hành

Hình bình hành AMHN có \(\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

b: Ta có: AMHN là hình bình hành

=>HM//AN và HM=AN

Ta có: HM//AN

N\(\in\)AE

Do đó: HM//ND

Ta có: HM=NA

NA=ND

Do đó: HM=ND

Xét tứ giác MHDN có

MH//DN

MH=DN

Do đó: MHDN là hình bình hành

c: Gọi O là giao điểm của AH và NM

Ta có: ANHM là hình chữ nhật

=>AH=MN và AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Ta có: ΔAEH vuông tại E

mà EO là đường trung tuyến

nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)

Xét ΔNEM có

EO là đường trung tuyến

\(EO=\dfrac{NM}{2}\)

Do đó: ΔNEM vuông tại E

=>NE\(\perp\)ME