Tìm một số chính phương có hai chữ số biết rằng số đó bằng bình phương tổng các chữ số của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình thì phân tích ra thành thế này
gọi số cần tìm là \(ab\) có:
\(ab=x^3;a+b=x^2\)(\(x\) là số tự nhiên mà khi lập phương lên thì bằng \(ab\), khi bình phương lên thì bằng \(a+b\))
Từ đó ta có: \(10a+b=x^3\)
\(a+b=x^2\)
Rồi suy ra được ab thì phải, mình không biết có đúng không nữa, nếu mà các bước mình làm đúng thì bạn nghiên cứu thêm nhé
Số chính phương có 2 chữ số và bằng bình phương của tổng 2 chữ số của nó là số 81. Bởi vì 8 + 1 = 9 và 9^2 = 81 là một số chính phương.
Gọi số có 2 chữ số là ab. 9 ≥ a ≥ 1 , 9 ≥ b ≥ 0 , a,b thuộc N.
Theo đề ta có :
( a + b ) ³ = ( 10 a + b ) ²
< = >a + b = [ 1 + 9 a / ( a + b) ] ²
=> a + b là số chính phương và 9a chia hết cho ( a + b)
=> a + b \(\in\){ 1 ; 4 ; 9 ; 16 } và 9a chia hết cho ( a + b )
a + b = 1 => 10 a + b = 1 (loại)
a + b = 4 => 10 a + b = 8 (loại)
a + b = 9 => 10 a + b = 27 => a = 2 và b = 7 (nhận)
a + b = 16=> 10 a + b = 64 => a = 6 và b = 4 (loại)
Vậy số cần tìm là 27
Bài 1: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$
Theo bài ra ta có:
$\overline{ab}-\overline{ba}=10a+b-(10b+a)=9(a-b)$ là 1 scp.
Mà $9$ cũng là 1 scp nên để $9(a-b)$ là scp thì $a-b$ là scp.
$a,b$ là các số tự nhiên có 1 chữ số nên $a-b<10$
$\Rightarrow a-b\in\left\{0,1,4,9\right\}$
Nếu $a-b=0$ thì $a=b$. Ta có các số $11,22,33,44,55,....,99$ đều thỏa mãn.
Nếu $a-b=1$ thì $a=b+1$. Ta có các số $10, 21,32,43,54,65,76,87,98$ đều thỏa mãn.
Nếu $a-b=4$ thì $a=b+4$. Ta có các số $40, 51, 62, 73, 84, 95$ đều thỏa mãn
Nếu $a-b=9$ thì $a=b+9$. Ta có số $90$ thỏa mãn.
Bài 2: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{ab}+\overline{ba}=10a+b+10b+a=11(a+b)$
Để tổng này là scp thì $a+b=11m^2$ với $m$ là số tự nhiên.
$\Rightarrow a+b\vdots 11$.
Mà $a,b$ là số tự nhiên có 1 chữ số nên $a+b< 20$
$\Rightarrow a+b=11$
$\Rightarrow (a,b)=(2,9), (3,8), (4,7), (5,6), (6,5), (7,4), (8,3), (9,2)$
Vậy số thỏa mãn là $29,38,47,56,65,74,83,92$
Gọi số tự nhiên đó có dạng ab
a+b=5
=>a=5-b
a2+b2=13
Thay a=5-b vào ta đc
(5-b)2+b2=13
<=>25-10b+b2+b2=13
<=>2b2-10b+12=0
<=>2(b2-5b+6)=0
<=>b2-2b-3b+6=0
<=>b(b-2)-3(b-2)=0
<=>(b-3)(b-2)=0
=> b-3=0 hoặc b-2=0
=> b=3 hoặc b=2
Vậy ab=32 hoặc ab=23