K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

A B C M I D E N O K H 1

Gọi O là t/đ của BE. Gọi K ,H lần lượt là gđ của ON vs AC và MN vs AC

Xét tg BDE có N là t/đ của DE (gt) và O là t/đ của BE (cách vẽ)

=> ON là đg trung bình của tg BDE => ON=1/2.BD và ON//BD

Xét tg BCE có : M là t/đ cuae BC (gt) và O là t/đ của BE (cv)

=> OM là đg trung bình của tg BCE=> OM=1/2.EC và OM//BE

Ta có: ON=1/2.BD và OM=1/2.CE. Mà BD=CE (gt) nên OM=ON=> Tg OMN cân tại O=> ^OMN=^ONM

Do OM//EC => OM//AC (vì E thuộc AC)=> ^OMN=^NHK (so le trong). Mà ^ONM=^KNH(đ đ)=> ^NHK=^KNH(vi ^OMN=^ONM)

Ta có: \(\widehat{BAC}+\widehat{K_1}=180\) (vì ON//AB) => \(2\widehat{IAC}+\widehat{K_1}=180\) (vì AI là tia phân giác của ^BAC)    (*)

         \(\widehat{NHK}+\widehat{KNH}+\widehat{K_1}=180\) ( t/c tổng các góc trong tg) =>\(2\widehat{NHK}+\widehat{K_1}=180\)(vì ^NHK=^KNH)    (**)

Từ (*),(**) => ^IAC=^NHK. Mà 2 gó này ở vị trí đồng vị => MH//AI    hay MN//AI   (đpcm)

10 tháng 8 2019

A B C D E O K x L

Gọi Ax là phân giác của ^BAC. Dựng hình bình hành ABLC.

Trước hết ta có \(\Delta\)DBC cân tại B => ^BCD = ^BDC = ^LCD (Vì AB // CL)

Tương tự ^CBE = ^LBE. Do đó BE,CD là hai đường phân giác trong \(\Delta\)BLC

Vì BE giao CD tại O nên LO là phân giác của ^BLC

Chú ý rằng Ax là phân giác của ^BAC, suy ra Ax // LO

Mà OK // Ax nên K,O,L thẳng hàng (Tiên đề Euclid)

Do vậy ^CKL = ^BLK = ^CLK => \(\Delta\)KCL cân tại C => CK = CL = AB (đpcm).