K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

Hỏi đáp Toán

Xét hình thoi MNPQ có ^MNP = 1200

Dễ dàng suy ra ^NMQ = 600 và ^MQP = 1200

Vì MNPQ là hình thoi nên QN là tia phân giác của ^MQP

=> ^NQP = ^NQM = 1200 / 2 = 600

Xét tam giác NMQ có ^NMQ = ^NQM ( = 600 )

Do đó tam giác NMQ đều => MN = NQ (*')

Xét tam giác NME và tam giác NQF có :

MN = NQ ( cmt )

^NMQ = ^NQP ( =600 )

ME = QF ( gt )

=> tam giác NME = tam giác NQF ( c-g-c ) (*)

=> NE = NF

=> tam giác NEF cân tại N

Mặt khác từ (*) ta cũng suy ra được ^MNE = ^QNF (1)

Ta cũng có từ (*') => ^MNQ = 600

Hay ^MNE + ^ENQ = 600 (2)

Từ (1) và (2) => ^QNF + ^ENQ = 600

Hay ^NEF = 600

Xét tam giác NEF là tam giác cân có 1 góc bằng 600

=> tam giác NEF là tam giác đều (đpcm)

22 tháng 1 2020

Vì MNPQ là hình thoi, lại có N=120°(gt)nên M+N=180°=> M=60°

∆MNQ có MN=MQ và có M=60°nên ∆MNQ đều

=>MN=MQ=NQ

Mặt khác QN là tia phân giác MQP(MNPQ là hình thoi)

=>NQP=Q/2=N/2=120°/2=60°

Xét ∆MNE và ∆QNP có

MN=NQ(CMT)

M=NQP=60°

ME=QF(GT)

=>∆MNE=QNP(c.g.c)

=>NE=NF. (1)

Lại có:

ENF=ENQ+QNF=ENQ+ENM(QNF=ENM)=60° (2)

TỪ 1 và 2=>∆NEF đều

14 tháng 8 2019

P N M Q E F

Nối NQ. 

Vì NPQM là hình thoi

=> \(\widehat{MQP}=\widehat{MNP}=120^o\)

=> \(\widehat{NQF}=\frac{1}{2}.\widehat{MQP}=60^o\)

Có tam giác NMQ cân tại M  ( NM=MQ)

\(\widehat{MNQ}=\frac{1}{2}\widehat{MNP}=\frac{1}{2}.120=60^o\)

=> Tam giác NMQ đều

Xét tam giác NME và tam giác NQF 

có: NM=NQ  ( tam giác NMQ đều)

    ME =QF ( giả thiết)

   \(\widehat{NME}=\widehat{NQF}=60^o\)

=> Tam giác NME = Tam giác NQF

=> NE =NF => Tam giác NEF cân tại N

và \(\widehat{MNE}=\widehat{QNF}\)=> ^QNF+ ^QNE =^MNE +^QNE =^QNM =60^o

=> \(\widehat{FNE}=60^o\)

=> Tam giác NEF  đều

10 tháng 2 2019

Gợi ý thôi cx được nhưng mà gợi ý theo kiểu chi tiết nhé , đừng bảo là kẻ cái này cái nọ rồi tự giải thì mik chịu :D 

10 tháng 2 2019

Nhanh nhé , làm xong , mik sẽ

17 tháng 11 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: AB = AD +DB (1)

BC = BE + EC (2)

AC = AF + FC (3)

AB = AC = BC ( vì tam giác ABC là tam giác đều) (4)

AD = BE = CF ( giả thiết) (5)

Từ (1), (2), (3) và (4),(5) suy ra: BD = EC = AF

Xét ΔADF và ΔBED, ta có:

AD = BE (gt)

∠A =∠B =60o (vì tam giác ABC đều)

AF = BD (chứng minh trên)

suy ra: ΔADF= ΔBED (c.g.c)

⇒ DF=ED (hai cạnh tương ứng) (6)

Xét ΔADF và ΔCFE, ta có:

AD = CF (gt)

∠A =∠C =60o (vì tam giác ABC đều)

AF = CE (chứng minh trên)

suy ra: ΔADF= ΔCFE (c.g.c)

Nên: DF = FE (hai cạnh tương ứng) (7)

Từ (6) và (7) suy ra: DF = ED = FE

Vậy tam giác DFE đều

29 tháng 12 2016

do tam giác abc cân tại a

=>góc abc=180-2*góc a

do am=an

=>tam giác amn can taị a

=>góc amn=180-2*góc a

=>góc amn=góc abc(vì cùng bằng 

180-2*góc a)

mà hai góc này ở vị trí so le trong 

=>mn song song vs ab

xét 2 tam giác abn và acm có

chung góc a

am=an

ab=ac

=>tg abn=tg acm

=>bm=cm(2 cạnh tương ứng)

cau 2

theo đề bài ta có

tg abc đều =>ab=bc=ca

ad=be=cf

=>ab-ad=bc-be=ac-cf

hay bd=ce=af

xét 3 tg ade,bed và cef ta có

góc a=gócb=gócc

ad=be=cf

bd=ce=af

=> tg ade= tg bed= tg cef 

=>de=df=ef

=>tg def là tg đều

31 tháng 8 2016

A B C D E F

\(\Delta ABC\)đều (gt) nên AB = BC = AC ; góc A = góc B = góc C = 600 mà AD = BE = CF (gt)

=> AB - AD = BC - BE = AC - CF <=> BD = CE = AF

\(\Delta ADF,\Delta BED\)có AD = BE (gt) ; góc DAF = góc EBD = 600 (cmt) ; AF = BD (cmt) nên\(\Delta ADF=\Delta BED\left(c.g.c\right)\)

=> DF = ED (2 cạnh tương ứng) (1)

\(\Delta ADF,\Delta CFE\)có AD = CF (gt) ; góc DAF = góc FCE = 600 (cmt) ; AF = CE (cmt) nên\(\Delta ADF=\Delta CFE\left(c.g.c\right)\)

=> DF = FE (2 cạnh tương ứng) (2).Từ (1) và (2),ta có DF = FE = ED.Vậy\(\Delta DEF\)đều

6 tháng 4 2020

. Cho tam giác ABC, Các tia phân giác của các góc B và C cắt nhau tại I Qua I kẻ đường thẳng song song với BC cắt AB tại M và AC tại N. Chứng minh rằng MN = BM + CN

Hình tự vẽ

Xét 3 tam giác \(ADF,BED,CFE\),ta có:

\(AD=BE=CF\)(gt )

\(\widehat{A}=\widehat{B}=\widehat{C}\)(gt)

DB=EC=AD ( do các cạnh của tam giác đều ABC - các cạnh AD,BE,FC = nhau )

=>3 tam giác \(ADF,BED,CFE\)=nhau

=> DE=DF=FE

=> tam giác DEF đều

P/s tham khảo nha

13 tháng 1 2018

A B C D E F

Ta có: AB=BC=CA (t/g ABC đều)

AD=BE=CF

=>BD=CE=AF

Xét t/g ADF và t/g BED có:

AD=BE (gt)

góc A=góc B = 60 độ (gt)

AF=BD (cmt)

=>t/g ADF = t/g BED (c.g.c)

=>DF = DE (1)

Xét t/g ADF và t/g CFE có:

AD = CF (gt)

góc A=góc C = 60 độ (gt)

AF = CE (cmt)

=>t/g ADF = t/g CFE (c.g.c)

=> DF = EF (2)

Từ (1) và (2) => DF = DE = EF => t/g DEF đều