Cho tam giác ABC vuông tại A, AB = 3, AC = 4. Đường cao AH và đường trung tuyến AM. Xét vị trí tương đối của các điểm B, A,M,C đối với đường tròn (m;9/5)
Làm giúp mik bài này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì ΔABC vuông tại A
nên A nằm trên (O)
b: ΔOAC cân tại O
mà OI là đường cao
nên OI là phân giác của gócc AOC
Xét ΔOAE và ΔOCE có
OA=OC
góc AOE=góc COE
OE chung
Do đó: ΔOAE=ΔOCE
=>góc OCE=90 độ
=>EC là tiếp tuyến của (O)
Gọi E là giao của AC và PB, F là giao của AB và PC
Qua P kẻ đường thẳng d song song với BC
Giả sử E và F lần luợt là giao của AC và AB với d
Ta có: \(\frac{BM}{PF'}=\frac{CM}{PE'}\left(=\frac{AM}{PA}\right)\), mà \(BM=CM\) => PE'=PF'
Do đó \(\frac{PE}{EB}=\frac{PE'}{BC}=\frac{PF'}{BC}=\frac{PF}{FC}\) => EF//BC => \(\frac{EA}{AC}=\frac{FA}{AB}\)
Gọi I là giao của HQ và AB; K là giao của HR và AC
Áp dụng định lý Talet có: \(\frac{QI}{IH}=\frac{EA}{AC}=\frac{FA}{AB}=\frac{RK}{KH}\), do đó: IK//QR (1)
\(\widehat{MAC}=\widehat{AIK}\) nên PM _|_ IK
Từ (1) => PM _|_ QR hay PA _|_ QR
Gọi S là giao RA và PB
\(\frac{HI}{HK}=\frac{HQ}{HR}=\frac{HB}{HA}\Rightarrow\frac{HB}{HQ}=\frac{HA}{HR};\widehat{BHQ}=\widehat{AHR}\)
có tam giác BHQ đồng dạng với tam giác AHE
=> \(\widehat{QBH}=\widehat{RAH}\) => Tứ giác BHAS nội tiếp
Vậy \(\widehat{ASB\:}=90^o\) hay RS _|_ PQ (2)
Từ (1) (2) => A là trực tâm tam giác PQR
giúp mik nhanh câu c dc khum ạ
2 câu kia mik xong r
cảm ơn các bạn