K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

\(=8xy-16x^2y+16xy^2\)

23 tháng 8 2023

\(a,\dfrac{2}{3}xy^2.\dfrac{2}{3}xy=\dfrac{4}{9}x^2y^3\)

\(b,-\dfrac{1}{2}x^2y.2xy^2=-x^3y^3\)

\(c,8xy^3.2x^3y^2=16x^4y^5\)

\(d,-\dfrac{1}{4}x^2y^3.2x^3y^2=-\dfrac{1}{2}x^5y^5\)

\(e,4x^2y^4.\dfrac{1}{2}x^2y^3=2x^4y^7\)

\(f,-8xy.\dfrac{1}{4}x^2y=-2x^3y^2\)

\(Ayumu\)

15 tháng 10 2021

\(=8xy-16x^2y+24xy^2\)

18 tháng 10 2021

\(=8xy-16x^2y+24xy^2\)

28 tháng 10 2018

=-4x^2-9y^2-4(x^2-2xy+y^2)-8xy

=4x^2-9y^2-4x^2+8xy-4y^2-8xy

= -13y^2

28 tháng 10 2018

đề bài như thế nào bn

2 tháng 8 2021

Ta có:

D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18

D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18

D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1

D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1

Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3

Hay x = 5 , y = -3

Đc chx bạn

2 tháng 8 2021

12 tháng 10 2021

\(a,=\dfrac{2y^4}{3x\left(2x-3y\right)}\\ b,=-\dfrac{2y\left(3x-1\right)^2}{3x^2}\\ c,=\dfrac{5\left(4x^2-9\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)\left(2x+3\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)}{2x+3}\\ d,=\dfrac{5x\left(x-2y\right)}{-2\left(x-2y\right)^3}=-\dfrac{5x}{2\left(x-2y\right)^2}\)

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

$2x^3y+2xy^3+4x^2y^2-8xy$

$=2xy(x^2+y^2+2xy-4)$

$=2xy[(x^2+2xy+y^2)-4]$

$=2xy[(x+y)^2-2^2]=2xy(x+y-2)(x+y+2)$

P.s: lần sau bạn lưu ý ghi đầy đủ yêu cầu đề.